Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1641.16 on revision:1641

* Page found: Dynamik im Schrödinger- Heisenberg- und Wechselwirkungsbild (eq math.1641.16)

(force rerendering)

Occurrences on the following pages:

Hash: 5e0e58527dc0465a4753cb09374d0f39

TeX (original user input):

\begin{align}
& \frac{d}{dt}F(\bar{q},\bar{p},t)=\frac{\partial }{\partial t}F(\bar{q},\bar{p},t)+\sum\limits_{i=1}^{3}{\left( \frac{\partial F(\bar{q},\bar{p},t)}{\partial {{q}_{i}}}{{{\dot{q}}}_{i}}+\frac{\partial F(\bar{q},\bar{p},t)}{\partial {{p}_{i}}}{{{\dot{p}}}_{i}} \right)} \\
& \frac{d}{dt}F(\bar{q},\bar{p},t)=\frac{\partial }{\partial t}F(\bar{q},\bar{p},t)+\sum\limits_{i=1}^{3}{\left( \frac{\partial F(\bar{q},\bar{p},t)}{\partial {{q}_{i}}}\frac{\partial H}{\partial {{p}_{i}}}-\frac{\partial F(\bar{q},\bar{p},t)}{\partial {{p}_{i}}}\frac{\partial H}{\partial {{q}_{i}}} \right)}=\frac{\partial }{\partial t}F(\bar{q},\bar{p},t)+\left\{ H,F \right\} \\
\end{align}

TeX (checked):

{\begin{aligned}&{\frac {d}{dt}}F({\bar {q}},{\bar {p}},t)={\frac {\partial }{\partial t}}F({\bar {q}},{\bar {p}},t)+\sum \limits _{i=1}^{3}{\left({\frac {\partial F({\bar {q}},{\bar {p}},t)}{\partial {{q}_{i}}}}{{\dot {q}}_{i}}+{\frac {\partial F({\bar {q}},{\bar {p}},t)}{\partial {{p}_{i}}}}{{\dot {p}}_{i}}\right)}\\&{\frac {d}{dt}}F({\bar {q}},{\bar {p}},t)={\frac {\partial }{\partial t}}F({\bar {q}},{\bar {p}},t)+\sum \limits _{i=1}^{3}{\left({\frac {\partial F({\bar {q}},{\bar {p}},t)}{\partial {{q}_{i}}}}{\frac {\partial H}{\partial {{p}_{i}}}}-{\frac {\partial F({\bar {q}},{\bar {p}},t)}{\partial {{p}_{i}}}}{\frac {\partial H}{\partial {{q}_{i}}}}\right)}={\frac {\partial }{\partial t}}F({\bar {q}},{\bar {p}},t)+\left\{H,F\right\}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (64.015 KB / 5.935 KB) :

d d t F ( q ¯ , p ¯ , t ) = t F ( q ¯ , p ¯ , t ) + i = 1 3 ( F ( q ¯ , p ¯ , t ) q i q ˙ i + F ( q ¯ , p ¯ , t ) p i p ˙ i ) d d t F ( q ¯ , p ¯ , t ) = t F ( q ¯ , p ¯ , t ) + i = 1 3 ( F ( q ¯ , p ¯ , t ) q i H p i - F ( q ¯ , p ¯ , t ) p i H q i ) = t F ( q ¯ , p ¯ , t ) + { H , F } missing-subexpression 𝑑 𝑑 𝑡 𝐹 ¯ 𝑞 ¯ 𝑝 𝑡 𝑡 𝐹 ¯ 𝑞 ¯ 𝑝 𝑡 superscript subscript 𝑖 1 3 𝐹 ¯ 𝑞 ¯ 𝑝 𝑡 subscript 𝑞 𝑖 subscript ˙ 𝑞 𝑖 𝐹 ¯ 𝑞 ¯ 𝑝 𝑡 subscript 𝑝 𝑖 subscript ˙ 𝑝 𝑖 missing-subexpression 𝑑 𝑑 𝑡 𝐹 ¯ 𝑞 ¯ 𝑝 𝑡 𝑡 𝐹 ¯ 𝑞 ¯ 𝑝 𝑡 superscript subscript 𝑖 1 3 𝐹 ¯ 𝑞 ¯ 𝑝 𝑡 subscript 𝑞 𝑖 𝐻 subscript 𝑝 𝑖 𝐹 ¯ 𝑞 ¯ 𝑝 𝑡 subscript 𝑝 𝑖 𝐻 subscript 𝑞 𝑖 𝑡 𝐹 ¯ 𝑞 ¯ 𝑝 𝑡 𝐻 𝐹 {\displaystyle{\displaystyle\begin{aligned} &\displaystyle\frac{d}{dt}F(\bar{q% },\bar{p},t)=\frac{\partial}{\partial t}F(\bar{q},\bar{p},t)+\sum\limits_{i=1}% ^{3}{\left(\frac{\partial F(\bar{q},\bar{p},t)}{\partial{{q}_{i}}}{{{\dot{q}}}% _{i}}+\frac{\partial F(\bar{q},\bar{p},t)}{\partial{{p}_{i}}}{{{\dot{p}}}_{i}}% \right)}\\ &\displaystyle\frac{d}{dt}F(\bar{q},\bar{p},t)=\frac{\partial}{\partial t}F(% \bar{q},\bar{p},t)+\sum\limits_{i=1}^{3}{\left(\frac{\partial F(\bar{q},\bar{p% },t)}{\partial{{q}_{i}}}\frac{\partial H}{\partial{{p}_{i}}}-\frac{\partial F(% \bar{q},\bar{p},t)}{\partial{{p}_{i}}}\frac{\partial H}{\partial{{q}_{i}}}% \right)}=\frac{\partial}{\partial t}F(\bar{q},\bar{p},t)+\left\{H,F\right\}\\ \end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (7.223 KB / 582 B) :

ddtF(q¯,p¯,t)=tF(q¯,p¯,t)+i=13(F(q¯,p¯,t)qiq˙i+F(q¯,p¯,t)pip˙i)ddtF(q¯,p¯,t)=tF(q¯,p¯,t)+i=13(F(q¯,p¯,t)qiHpiF(q¯,p¯,t)piHqi)=tF(q¯,p¯,t)+{H,F}

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dynamik im Schrödinger- Heisenberg- und Wechselwirkungsbild page

Identifiers

  • d
  • d
  • t
  • F
  • q¯
  • p¯
  • t
  • t
  • F
  • q¯
  • p¯
  • t
  • i
  • F
  • q¯
  • p¯
  • t
  • qi
  • q˙i
  • F
  • q¯
  • p¯
  • t
  • pi
  • p˙i
  • d
  • d
  • t
  • F
  • q¯
  • p¯
  • t
  • t
  • F
  • q¯
  • p¯
  • t
  • i
  • F
  • q¯
  • p¯
  • t
  • qi
  • H
  • pi
  • F
  • q¯
  • p¯
  • t
  • pi
  • H
  • qi
  • t
  • F
  • q¯
  • p¯
  • t
  • H
  • F

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results