Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1703.38 on revision:1703

* Page found: Zustände mit Bahn- und Spinvariablen (eq math.1703.38)

(force rerendering)

Occurrences on the following pages:

Hash: fb6b8258ce4b5845b51a47bd32581879

TeX (original user input):

\begin{align}

& \hat{H}={{{\hat{H}}}_{B}}\times 1+{{H}_{S}}=\left[\frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r) \right]\times 1-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}{{{\hat{\bar{\sigma }}}}_{3}} \\
& \hat{H}\cong \left[\frac{{{{\bar{p}}}^{2}}}{2{{m}_{0}}}+V(r) \right]\times 1-\frac{\left| e \right|B}{2{{m}_{0}}}\left( {{{\hat{L}}}_{3}}\times 1+\hbar {{{\hat{\bar{\sigma }}}}_{3}} \right) \\
& \frac{{{{\bar{p}}}^{2}}}{2{{m}_{0}}}+V(r)={{H}_{0}} \\
& {{H}_{0}}\left| nlm \right\rangle ={{E}_{nl}}\left| nlm \right\rangle \\
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (50.475 KB / 5.521 KB) :

H ^ = H ^ B × 1 + H S = [ 1 2 m 0 ( p ¯ - e A ¯ ) 2 + V ( r ) ] × 1 - | e | B 2 m 0 σ ¯ ^ 3 H ^ [ p ¯ 2 2 m 0 + V ( r ) ] × 1 - | e | B 2 m 0 ( L ^ 3 × 1 + σ ¯ ^ 3 ) p ¯ 2 2 m 0 + V ( r ) = H 0 H 0 | n l m = E n l | n l m absent ^ 𝐻 subscript ^ 𝐻 𝐵 1 subscript 𝐻 𝑆 delimited-[] 1 2 subscript 𝑚 0 superscript ¯ 𝑝 𝑒 ¯ 𝐴 2 𝑉 𝑟 1 𝑒 Planck-constant-over-2-pi 𝐵 2 subscript 𝑚 0 subscript ^ ¯ 𝜎 3 missing-subexpression ^ 𝐻 delimited-[] superscript ¯ 𝑝 2 2 subscript 𝑚 0 𝑉 𝑟 1 𝑒 𝐵 2 subscript 𝑚 0 subscript ^ 𝐿 3 1 Planck-constant-over-2-pi subscript ^ ¯ 𝜎 3 missing-subexpression superscript ¯ 𝑝 2 2 subscript 𝑚 0 𝑉 𝑟 subscript 𝐻 0 missing-subexpression subscript 𝐻 0 ket 𝑛 𝑙 𝑚 subscript 𝐸 𝑛 𝑙 ket 𝑛 𝑙 𝑚 {\displaystyle{\displaystyle\begin{aligned} \par&\displaystyle\hat{H}={{{\hat{% H}}}_{B}}\times 1+{{H}_{S}}=\left[\frac{1}{2{{m}_{0}}}{{\left(\bar{p}-e\bar{A}% \right)}^{2}}+V(r)\right]\times 1-\frac{\left|e\right|\hbar B}{2{{m}_{0}}}{{{% \hat{\bar{\sigma}}}}_{3}}\\ &\displaystyle\hat{H}\cong\left[\frac{{{{\bar{p}}}^{2}}}{2{{m}_{0}}}+V(r)% \right]\times 1-\frac{\left|e\right|B}{2{{m}_{0}}}\left({{{\hat{L}}}_{3}}% \times 1+\hbar{{{\hat{\bar{\sigma}}}}_{3}}\right)\\ &\displaystyle\frac{{{{\bar{p}}}^{2}}}{2{{m}_{0}}}+V(r)={{H}_{0}}\\ &\displaystyle{{H}_{0}}\left|nlm\right\rangle={{E}_{nl}}\left|nlm\right\rangle% \\ \end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.354 KB / 656 B) :

H^=H^B×1+HS=[12m0(p¯eA¯)2+V(r)]×1|e|B2m0σ¯^3H^[p¯22m0+V(r)]×1|e|B2m0(L^3×1+σ¯^3)p¯22m0+V(r)=H0H0|nlm=Enl|nlm

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Zustände mit Bahn- und Spinvariablen page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results