Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1750.17 on revision:1750

* Page found: Zeitunabhängige Störungsrechnung bei Entartung (eq math.1750.17)

(force rerendering)

Occurrences on the following pages:

Hash: 2d5ea5e6d1d892c3d2e623450ea1d957

TeX (original user input):

\begin{align}

& \left\langle  k,\beta  \right|\left( {{{\hat{H}}}^{(0)}}-{{E}_{k}}^{(0)} \right)\left| {{\Psi }_{k}}^{(1)} \right\rangle =\sum\limits_{\alpha }{{{c}_{\alpha }}\left( \left\langle  k,\beta   |  k,\alpha  \right\rangle {{E}_{k}}^{(1)}-\left\langle  k,\beta  \right|\hat{V}\left| k,\alpha  \right\rangle  \right)} \\

& \left\langle  k,\beta  \right|\left( {{{\hat{H}}}^{(0)}}-{{E}_{k}}^{(0)} \right)\left| {{\Psi }_{k}}^{(1)} \right\rangle =0 \\

& \left\langle  k,\beta   |  k,\alpha  \right\rangle ={{\delta }_{\beta \alpha }} \\

& \left\langle  k,\beta  \right|\hat{V}\left| k,\alpha  \right\rangle :={{{\hat{V}}}_{\beta \alpha }} \\

\end{align}

TeX (checked):

{\begin{aligned}&\left\langle k,\beta \right|\left({{\hat {H}}^{(0)}}-{{E}_{k}}^{(0)}\right)\left|{{\Psi }_{k}}^{(1)}\right\rangle =\sum \limits _{\alpha }{{{c}_{\alpha }}\left(\left\langle k,\beta |k,\alpha \right\rangle {{E}_{k}}^{(1)}-\left\langle k,\beta \right|{\hat {V}}\left|k,\alpha \right\rangle \right)}\\&\left\langle k,\beta \right|\left({{\hat {H}}^{(0)}}-{{E}_{k}}^{(0)}\right)\left|{{\Psi }_{k}}^{(1)}\right\rangle =0\\&\left\langle k,\beta |k,\alpha \right\rangle ={{\delta }_{\beta \alpha }}\\&\left\langle k,\beta \right|{\hat {V}}\left|k,\alpha \right\rangle :={{\hat {V}}_{\beta \alpha }}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.949 KB / 585 B) :

k,β|(H^(0)Ek(0))|Ψk(1)=αcα(k,β|k,αEk(1)k,β|V^|k,α)k,β|(H^(0)Ek(0))|Ψk(1)=0k,β|k,α=δβαk,β|V^|k,α:=V^βα
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>k</mi><mo>,</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>&#x2212;</mo><msup><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>k</mi><mo>,</mo><mi>&#x03B2;</mi><mo>|</mo><mi>k</mi><mo>,</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><msup><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>k</mi><mo>,</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>k</mi><mo>,</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>k</mi><mo>,</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>&#x2212;</mo><msup><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>k</mi><mo>,</mo><mi>&#x03B2;</mi><mo>|</mo><mi>k</mi><mo>,</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mi>&#x03B1;</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>k</mi><mo>,</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>k</mi><mo>,</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mi>:</mi><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mi>&#x03B1;</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Zeitunabhängige Störungsrechnung bei Entartung page

Identifiers

  • k
  • β
  • H^
  • Ek
  • Ψk
  • α
  • cα
  • k
  • β
  • k
  • α
  • Ek
  • k
  • β
  • V^
  • k
  • α
  • k
  • β
  • H^
  • Ek
  • Ψk
  • k
  • β
  • k
  • α
  • δβα
  • k
  • β
  • V^
  • k
  • α
  • V^βα

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results