Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1750.17 on revision:1750
* Page found: Zeitunabhängige Störungsrechnung bei Entartung (eq math.1750.17)
(force rerendering)Occurrences on the following pages:
Hash: 2d5ea5e6d1d892c3d2e623450ea1d957
TeX (original user input):
\begin{align}
& \left\langle k,\beta \right|\left( {{{\hat{H}}}^{(0)}}-{{E}_{k}}^{(0)} \right)\left| {{\Psi }_{k}}^{(1)} \right\rangle =\sum\limits_{\alpha }{{{c}_{\alpha }}\left( \left\langle k,\beta | k,\alpha \right\rangle {{E}_{k}}^{(1)}-\left\langle k,\beta \right|\hat{V}\left| k,\alpha \right\rangle \right)} \\
& \left\langle k,\beta \right|\left( {{{\hat{H}}}^{(0)}}-{{E}_{k}}^{(0)} \right)\left| {{\Psi }_{k}}^{(1)} \right\rangle =0 \\
& \left\langle k,\beta | k,\alpha \right\rangle ={{\delta }_{\beta \alpha }} \\
& \left\langle k,\beta \right|\hat{V}\left| k,\alpha \right\rangle :={{{\hat{V}}}_{\beta \alpha }} \\
\end{align}
TeX (checked):
{\begin{aligned}&\left\langle k,\beta \right|\left({{\hat {H}}^{(0)}}-{{E}_{k}}^{(0)}\right)\left|{{\Psi }_{k}}^{(1)}\right\rangle =\sum \limits _{\alpha }{{{c}_{\alpha }}\left(\left\langle k,\beta |k,\alpha \right\rangle {{E}_{k}}^{(1)}-\left\langle k,\beta \right|{\hat {V}}\left|k,\alpha \right\rangle \right)}\\&\left\langle k,\beta \right|\left({{\hat {H}}^{(0)}}-{{E}_{k}}^{(0)}\right)\left|{{\Psi }_{k}}^{(1)}\right\rangle =0\\&\left\langle k,\beta |k,\alpha \right\rangle ={{\delta }_{\beta \alpha }}\\&\left\langle k,\beta \right|{\hat {V}}\left|k,\alpha \right\rangle :={{\hat {V}}_{\beta \alpha }}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (4.949 KB / 585 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>k</mi><mo>,</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>−</mo><msup><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>k</mi><mo>,</mo><mi>β</mi><mo>|</mo><mi>k</mi><mo>,</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><msup><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>−</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>k</mi><mo>,</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>k</mi><mo>,</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>k</mi><mo>,</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>−</mo><msup><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>k</mi><mo>,</mo><mi>β</mi><mo>|</mo><mi>k</mi><mo>,</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><msub><mi>δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>β</mi><mi>α</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>k</mi><mo>,</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>k</mi><mo>,</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mi>:</mi><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>β</mi><mi>α</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Zeitunabhängige Störungsrechnung bei Entartung page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results