Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1989.32 on revision:1989

* Page found: Hamilton-Jacobische Differenzialgleichung (eq math.1989.32)

(force rerendering)

Occurrences on the following pages:

Hash: 32cbae6f774239257449a2d8767c7af4

TeX (original user input):

\begin{align}
  & Q=\left( \frac{\partial S(q,P,t)}{\partial \alpha } \right)=-t+\frac{1}{\omega }\int{dq}{{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}^{-\frac{1}{2}}}=\beta  \\
 & Q=\beta =-t+\frac{1}{\omega }\arcsin \left( q\sqrt{\frac{m{{\omega }^{2}}}{2\left| \alpha  \right|}} \right) \\
 & \Rightarrow q=\frac{1}{\omega }\sqrt{\frac{2\alpha }{m}}\sin \left( \omega (t+\beta ) \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&Q=\left({\frac {\partial S(q,P,t)}{\partial \alpha }}\right)=-t+{\frac {1}{\omega }}\int {dq}{{\left({\frac {2\alpha }{m{{\omega }^{2}}}}-{{q}^{2}}\right)}^{-{\frac {1}{2}}}}=\beta \\&Q=\beta =-t+{\frac {1}{\omega }}\arcsin \left(q{\sqrt {\frac {m{{\omega }^{2}}}{2\left|\alpha \right|}}}\right)\\&\Rightarrow q={\frac {1}{\omega }}{\sqrt {\frac {2\alpha }{m}}}\sin \left(\omega (t+\beta )\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (33.905 KB / 3.979 KB) :

Q = ( S ( q , P , t ) α ) = - t + 1 ω 𝑑 q ( 2 α m ω 2 - q 2 ) - 1 2 = β Q = β = - t + 1 ω arcsin ( q m ω 2 2 | α | ) q = 1 ω 2 α m sin ( ω ( t + β ) ) missing-subexpression 𝑄 𝑆 𝑞 𝑃 𝑡 𝛼 𝑡 1 𝜔 differential-d 𝑞 superscript 2 𝛼 𝑚 superscript 𝜔 2 superscript 𝑞 2 1 2 𝛽 missing-subexpression 𝑄 𝛽 𝑡 1 𝜔 𝑞 𝑚 superscript 𝜔 2 2 𝛼 missing-subexpression absent 𝑞 1 𝜔 2 𝛼 𝑚 𝜔 𝑡 𝛽 {\displaystyle{\displaystyle\begin{aligned} &\displaystyle Q=\left(\frac{% \partial S(q,P,t)}{\partial\alpha}\right)=-t+\frac{1}{\omega}\int{dq}{{\left(% \frac{2\alpha}{m{{\omega}^{2}}}-{{q}^{2}}\right)}^{-\frac{1}{2}}}=\beta\\ &\displaystyle Q=\beta=-t+\frac{1}{\omega}\arcsin\left(q\sqrt{\frac{m{{\omega}% ^{2}}}{2\left|\alpha\right|}}\right)\\ &\displaystyle\Rightarrow q=\frac{1}{\omega}\sqrt{\frac{2\alpha}{m}}\sin\left(% \omega(t+\beta)\right)\\ \end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.563 KB / 574 B) :

Q=(S(q,P,t)α)=t+1ωdq(2αmω2q2)12=βQ=β=t+1ωarcsin(qmω22|α|)q=1ω2αmsin(ω(t+β))

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Hamilton-Jacobische Differenzialgleichung page

Identifiers

  • Q
  • S
  • q
  • P
  • t
  • α
  • t
  • ω
  • q
  • α
  • m
  • ω
  • q
  • β
  • Q
  • β
  • t
  • ω
  • q
  • m
  • ω
  • α
  • q
  • ω
  • α
  • m
  • ω
  • t
  • β

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results