Hamilton-Jacobische Differenzialgleichung

Aus PhysikWiki
Zur Navigation springen Zur Suche springen




Der einfachste Fall, bei dem alle Koordinaten zyklisch sind:



Allgemeiner wähle man speziell als Erzeugende der kanonischen Trafo:



dann suchen wir die folgende Trafo:


mit


So dass:



Dies ist eine Differenzialgleichung zur Bestimmung von S und der Koordinaten P und Q, die so genannte

Hamilton- Jacobi- Differenzialgleichung.

Eine nichtlineare partielle Differenzialgleichung erster Ordnung für


Also haben wir nur Abhängigkeit von f+1 Variablen:


Die kanonischen Gleichungen lauten:



Lösungsschema für die Hamilton- Jacobi DGL:

  1. Lösung der Ham- Jacobi-DGL:
  1. Aus der Erzeugenden

folgt:



mit der implizierten Umkehrung:



möglich wegen



Somit ergeben sich f Gleichungen für q1,...qf

4.


5. Bestimmung von

aus den Anfangsbedingungen:

In drei (3.):


In vier (4.):



Nach Gleichungen 3) und 4) ist damit

und

bestimmt

Physikalische Bedeutung von S:


S kann somit als Wirkungsfunktional interpretiert werden.

Beispiel: 1 dim Oszi

1.


H als Hamiltonfunktion und S als Erzeugende der kanonischen Trafo mit


Hamilton- Jacobi DGL:



2. Lösungsansatz:



Dies ist als Separationsansatz nach q und t zu interpretieren. P ist ein Parameter



Dabei ist die linke Seite unabhängig von t und die rechte unabhängig von q. Die Lösung kann also nur dann für alle t und q übereinstimmen, wenn:




Es folgt:



Also:



Da Potenziale um skalare Faktoren verschoben werden können:


3.


Mit der Nebenbedingung, dass Q=to (Dimension: Zeit)!

4.


5. Anfangsbedingungen: t=0: p(0)=0, q(0)=q0 ungleich 0!




Alpha beschreibt also die Gesamtenergie. Physikalisch sinnvoll, da zu dieser Zeit nur potenzielle Energie vorhanden ist.

Also: P=E (Energie) , Q= to (Zeit) → Energie und Zeit als neue verallgemeinerte Koordinaten bei der Transformation, die durch

erzeugt wird.

Spezialfall:

Nicht explizit zeitabhängige Hamiltonfunktion H


H ist dann Integral der Bewegung

Hamilton- Jacobi DGL:



Lösungsansatz:



Somit folgt:


Energie bei skleronomen Zwangsbedingungen


heißt verkürztes Wirkungsfunktional

Dieses kann auch als Erzeugende einer kanonischen Trafo (im engeren Sinn) aufgefasst werden:



Bezug zur Quantenmechanik

  • Betrachten wir 1 Teilchen im Potenzial
,
gilt auch für

sind dann Flächen im R³:

Dabei sind

Wirkunsgwellen mit einer Phasengeschwindigkeit


mit


Der Teilchenimpuls eines fliegenden Teilchens dagegen berechnet such ebenfalls als Gradient der Erzeugenden:


Damit haben wir jedoch eine Betrachtung der " Wirkungswellen" entgegen einer Darstellung als Teilchen mit Impuls p (Welle- Teilchen- Dualismus).

In jedem Fall erhält man als Hamilton- Jacobi- DiffGl:



Der Übergang zur Quantenmehcanik ist analog dem Übergang von der geometrischen Optik zur Wellenoptik (Wellenoptik als geometrische Optik für große Wellenlängen) und geometrische optik als Wellenoptik für kleine Weglängen (gut Übergangsresultate). Die typische optisch- mechanische Analogie

Wir erhalten in der quantenmechanischen Analogie als Wellenformalismus dagegen die Schödingergleichung:



links mit H = hamiltonoperator in Ortsdarstellung.

als Wellenfunktion

Unsere Koordinatentrafo lautet:



Auch hier sieht man die Analogie bei kleinen Wellenlängen, wenn folgende Näherung erlaubt ist:



Veranschaulichung der Zusammenhänge:

Aus der klassischen Mechanik gelangen wir durch Übergang von Poissonklammernauf Kommutatoren zur Heisenbergschen Matrizenmechanik, die sich zur Quantenmechanik transformieren läßt.

führt man in der klassischen Mechanik dagegen die Hamilton- Jacobi- Theorie ein (optisch- mechanisches Analogon), so gelangt man leicht zur Wellenmechanik (Schrödinger) und kann sich auf diesem Weg ebenso der Quantenmechanik nähern.