Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1989.33 on revision:1989

* Page found: Hamilton-Jacobische Differenzialgleichung (eq math.1989.33)

(force rerendering)

Occurrences on the following pages:

Hash: 9e37a5eb3b6a260bfc585558f3e44395

TeX (original user input):

p=\left( \frac{\partial S(q,P,t)}{\partial q} \right)=\frac{dW}{dq}=m\omega \sqrt{\frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}}}=\sqrt{2\alpha m}\cos \left( \omega (t+\beta ) \right)

TeX (checked):

p=\left({\frac {\partial S(q,P,t)}{\partial q}}\right)={\frac {dW}{dq}}=m\omega {\sqrt {{\frac {2\alpha }{m{{\omega }^{2}}}}-{{q}^{2}}}}={\sqrt {2\alpha m}}\cos \left(\omega (t+\beta )\right)

LaTeXML (experimentell; verwendet MathML) rendering

MathML (14.101 KB / 2.044 KB) :

p = ( S ( q , P , t ) q ) = d W d q = m ω 2 α m ω 2 - q 2 = 2 α m cos ( ω ( t + β ) ) 𝑝 𝑆 𝑞 𝑃 𝑡 𝑞 𝑑 𝑊 𝑑 𝑞 𝑚 𝜔 2 𝛼 𝑚 superscript 𝜔 2 superscript 𝑞 2 2 𝛼 𝑚 𝜔 𝑡 𝛽 {\displaystyle{\displaystyle p=\left(\frac{\partial S(q,P,t)}{\partial q}% \right)=\frac{dW}{dq}=m\omega\sqrt{\frac{2\alpha}{m{{\omega}^{2}}}-{{q}^{2}}}=% \sqrt{2\alpha m}\cos\left(\omega(t+\beta)\right)}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (1.776 KB / 395 B) :

p=(S(q,P,t)q)=dWdq=mω2αmω2q2=2αmcos(ω(t+β))

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Hamilton-Jacobische Differenzialgleichung page

Identifiers

  • p
  • S
  • q
  • P
  • t
  • q
  • d
  • W
  • d
  • q
  • m
  • ω
  • α
  • m
  • ω
  • q
  • α
  • m
  • ω
  • t
  • β

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results