Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2101.45 on revision:2101

* Page found: Magnetische Multipole (eq math.2101.45)

(force rerendering)

Occurrences on the following pages:

Hash: 438a75eb96dda23d0a8a0826ad68ef15

TeX (original user input):

\begin{align}
& \bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times {{\nabla }_{r}}\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right] \\
& \bar{j}(\bar{r}\acute{\ })\times {{\nabla }_{r}}\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right]=-{{\nabla }_{r}}\times \left[ \left( \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right)\bar{j}(\bar{r}\acute{\ }) \right]+\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right]{{\nabla }_{r}}\times \bar{j}(\bar{r}\acute{\ }) \\
& {{\nabla }_{r}}\times \bar{j}(\bar{r}\acute{\ })=0 \\
& \Rightarrow \bar{F}=-\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\times \left[ \left( \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right)\bar{j}(\bar{r}\acute{\ }) \right]=-{{\nabla }_{r}}\times \left( \bar{m}\times \bar{B}(\bar{r}) \right) \\
& \bar{F}=-{{\nabla }_{r}}\times \left( \bar{m}\times \bar{B}(\bar{r}) \right)=\left( \bar{m}\cdot {{\nabla }_{r}} \right)\bar{B}(\bar{r})=-{{\nabla }_{r}}\left( -\bar{m}\cdot \bar{B}(\bar{r}) \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&{\bar {F}}=\int _{}^{}{}{{d}^{3}}r{\acute {\ }}{\bar {j}}({\bar {r}}{\acute {\ }})\times {{\nabla }_{r}}\left[\left({\bar {r}}{\acute {\ }}\right)\cdot {\bar {B}}({\bar {r}})\right]\\&{\bar {j}}({\bar {r}}{\acute {\ }})\times {{\nabla }_{r}}\left[\left({\bar {r}}{\acute {\ }}\right)\cdot {\bar {B}}({\bar {r}})\right]=-{{\nabla }_{r}}\times \left[\left(\left({\bar {r}}{\acute {\ }}\right)\cdot {\bar {B}}({\bar {r}})\right){\bar {j}}({\bar {r}}{\acute {\ }})\right]+\left[\left({\bar {r}}{\acute {\ }}\right)\cdot {\bar {B}}({\bar {r}})\right]{{\nabla }_{r}}\times {\bar {j}}({\bar {r}}{\acute {\ }})\\&{{\nabla }_{r}}\times {\bar {j}}({\bar {r}}{\acute {\ }})=0\\&\Rightarrow {\bar {F}}=-\int _{}^{}{}{{d}^{3}}r{\acute {\ }}{{\nabla }_{r}}\times \left[\left(\left({\bar {r}}{\acute {\ }}\right)\cdot {\bar {B}}({\bar {r}})\right){\bar {j}}({\bar {r}}{\acute {\ }})\right]=-{{\nabla }_{r}}\times \left({\bar {m}}\times {\bar {B}}({\bar {r}})\right)\\&{\bar {F}}=-{{\nabla }_{r}}\times \left({\bar {m}}\times {\bar {B}}({\bar {r}})\right)=\left({\bar {m}}\cdot {{\nabla }_{r}}\right){\bar {B}}({\bar {r}})=-{{\nabla }_{r}}\left(-{\bar {m}}\cdot {\bar {B}}({\bar {r}})\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (91.416 KB / 8.446 KB) :

F ¯ = d 3 r ´ j ¯ ( r ¯ ´ ) × r [ ( r ¯ ´ ) B ¯ ( r ¯ ) ] j ¯ ( r ¯ ´ ) × r [ ( r ¯ ´ ) B ¯ ( r ¯ ) ] = - r × [ ( ( r ¯ ´ ) B ¯ ( r ¯ ) ) j ¯ ( r ¯ ´ ) ] + [ ( r ¯ ´ ) B ¯ ( r ¯ ) ] r × j ¯ ( r ¯ ´ ) r × j ¯ ( r ¯ ´ ) = 0 F ¯ = - d 3 r ´ r × [ ( ( r ¯ ´ ) B ¯ ( r ¯ ) ) j ¯ ( r ¯ ´ ) ] = - r × ( m ¯ × B ¯ ( r ¯ ) ) F ¯ = - r × ( m ¯ × B ¯ ( r ¯ ) ) = ( m ¯ r ) B ¯ ( r ¯ ) = - r ( - m ¯ B ¯ ( r ¯ ) ) missing-subexpression ¯ 𝐹 superscript 𝑑 3 𝑟 ´ absent ¯ 𝑗 ¯ 𝑟 ´ absent subscript 𝑟 ¯ 𝑟 ´ absent ¯ 𝐵 ¯ 𝑟 missing-subexpression ¯ 𝑗 ¯ 𝑟 ´ absent subscript 𝑟 ¯ 𝑟 ´ absent ¯ 𝐵 ¯ 𝑟 subscript 𝑟 delimited-[] ¯ 𝑟 ´ absent ¯ 𝐵 ¯ 𝑟 ¯ 𝑗 ¯ 𝑟 ´ absent delimited-[] ¯ 𝑟 ´ absent ¯ 𝐵 ¯ 𝑟 subscript 𝑟 ¯ 𝑗 ¯ 𝑟 ´ absent missing-subexpression subscript 𝑟 ¯ 𝑗 ¯ 𝑟 ´ absent 0 missing-subexpression absent ¯ 𝐹 superscript 𝑑 3 𝑟 ´ absent subscript 𝑟 delimited-[] ¯ 𝑟 ´ absent ¯ 𝐵 ¯ 𝑟 ¯ 𝑗 ¯ 𝑟 ´ absent subscript 𝑟 ¯ 𝑚 ¯ 𝐵 ¯ 𝑟 missing-subexpression ¯ 𝐹 subscript 𝑟 ¯ 𝑚 ¯ 𝐵 ¯ 𝑟 ¯ 𝑚 subscript 𝑟 ¯ 𝐵 ¯ 𝑟 subscript 𝑟 ¯ 𝑚 ¯ 𝐵 ¯ 𝑟 {\displaystyle{\displaystyle\begin{aligned} &\displaystyle\bar{F}=\int{{}}{{d}% ^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times{{\nabla}_{r}}\left[\left(\bar% {r}\acute{\ }\right)\cdot\bar{B}(\bar{r})\right]\\ &\displaystyle\bar{j}(\bar{r}\acute{\ })\times{{\nabla}_{r}}\left[\left(\bar{r% }\acute{\ }\right)\cdot\bar{B}(\bar{r})\right]=-{{\nabla}_{r}}\times\left[% \left(\left(\bar{r}\acute{\ }\right)\cdot\bar{B}(\bar{r})\right)\bar{j}(\bar{r% }\acute{\ })\right]+\left[\left(\bar{r}\acute{\ }\right)\cdot\bar{B}(\bar{r})% \right]{{\nabla}_{r}}\times\bar{j}(\bar{r}\acute{\ })\\ &\displaystyle{{\nabla}_{r}}\times\bar{j}(\bar{r}\acute{\ })=0\\ &\displaystyle\Rightarrow\bar{F}=-\int{{}}{{d}^{3}}r\acute{\ }{{\nabla}_{r}}% \times\left[\left(\left(\bar{r}\acute{\ }\right)\cdot\bar{B}(\bar{r})\right)% \bar{j}(\bar{r}\acute{\ })\right]=-{{\nabla}_{r}}\times\left(\bar{m}\times\bar% {B}(\bar{r})\right)\\ &\displaystyle\bar{F}=-{{\nabla}_{r}}\times\left(\bar{m}\times\bar{B}(\bar{r})% \right)=\left(\bar{m}\cdot{{\nabla}_{r}}\right)\bar{B}(\bar{r})=-{{\nabla}_{r}% }\left(-\bar{m}\cdot\bar{B}(\bar{r})\right)\\ \end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (11.493 KB / 701 B) :

F¯=d3r´j¯(r¯´)×r[(r¯´)B¯(r¯)]j¯(r¯´)×r[(r¯´)B¯(r¯)]=r×[((r¯´)B¯(r¯))j¯(r¯´)]+[(r¯´)B¯(r¯)]r×j¯(r¯´)r×j¯(r¯´)=0F¯=d3r´r×[((r¯´)B¯(r¯))j¯(r¯´)]=r×(m¯×B¯(r¯))F¯=r×(m¯×B¯(r¯))=(m¯r)B¯(r¯)=r(m¯B¯(r¯))

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Magnetische Multipole page

Identifiers

  • F¯
  • r
  • ´
  • j¯
  • r¯
  • ´
  • r
  • r¯
  • ´
  • B¯
  • r¯
  • j¯
  • r¯
  • ´
  • r
  • r¯
  • ´
  • B¯
  • r¯
  • r
  • r¯
  • ´
  • B¯
  • r¯
  • j¯
  • r¯
  • ´
  • r¯
  • ´
  • B¯
  • r¯
  • r
  • j¯
  • r¯
  • ´
  • r
  • j¯
  • r¯
  • ´
  • F¯
  • r
  • ´
  • r
  • r¯
  • ´
  • B¯
  • r¯
  • j¯
  • r¯
  • ´
  • r
  • m¯
  • B¯
  • r¯
  • F¯
  • r
  • m¯
  • B¯
  • r¯
  • m¯
  • r
  • B¯
  • r¯
  • r
  • m¯
  • B¯
  • r¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results