Magnetische Multipole
Der Artikel Magnetische Multipole basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 2.Kapitels (Abschnitt 4) der Elektrodynamikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
(stationär)
Ausgangspunkt ist
mit den Randbedingungen
Taylorentwicklung nach
von analog zum elektrischen Fall:
Die Stromverteilung sei stationär für
Monopol- Term
Mit
Im stationären Fall folgt aus der Kontinuitätsgleichung:
Somit verschwindet der Monopolterm in der Theorie.
Dipol- Term
Folgt:
Da
weil der Strom verschwindet! Somit gibt der Term
keinen Beitrag zum
Also:
Als Dipolpotenzial!!
das magnetische Dipolmoment!
Analog zu
dem elektrischen Dipolmoment
Die magnetische Induktion des Dipolmomentes ergibt sich als:
Wegen:
Analog ergab sich als elektrisches Dipolfeld:
Beispiel: Ebene Leiterschleife L:
Mit I = Strom durch den Leiter Dabei ist die Normale auf der von L eingeschlossenen Fläche F Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment |
analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment
welches von der positiven zur negativen Ladung zeigt.
Bewegte Ladungen
N Teilchen mit den Massen mi und den Ladungen qi bewegen sich.
Dabei sei die spezifische Ladung konstant:
Das magnetische Dipolmoment beträgt:
Mit dem Bahndrehimpuls :
gilt aber auch für starre Körper!
- Allgemeines Gesetz!
Jedoch gilt dies nicht für den Spin eines Elektrons!!!
Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen!
Kraft auf eine Stromverteilung
im Feld einer externen magnetischen Induktion :
Spürt die Lorentzkraft
Talyorentwicklung liefert:
im stationären Fall gilt wieder:
Also:
Man fordert:
(Das externe Feld soll keine Stromwirbel im Bereich von haben:
(Vergl. S. 34)