Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2284.14 on revision:2284

* Page found: Beispiel des Großkanonischen Ensenbles (eq math.2284.14)

(force rerendering)

Occurrences on the following pages:

Hash: 309757cdb4f3d380f7afb27db4f1ed3d

TeX (original user input):

\begin{align}
  & k{{\lambda }_{\nu }}={{\partial }_{\left\langle {{G}_{\nu }} \right\rangle }}S\Rightarrow k\beta ={{\left( \frac{\partial S}{\partial E} \right)}_{V,\bar{N}\left( \left( \text{V},\text{N sind nicht anzufassen bei der partiellen Ableitung} \right) \right)}} \\
 & k\sum\limits_{\nu }{{{\lambda }_{\nu }}{{M}_{\nu ,\alpha }}={{\partial }_{{{h}_{\alpha }}}}S}\Rightarrow {{\left( \frac{\partial S}{\partial N} \right)}_{E,\bar{N}}}=-k\beta \operatorname{Tr}\left( \frac{\partial H}{\partial V}R \right)\quad \left( {{\partial }_{V}}N\to 0 \right) \\
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.723 KB / 672 B) :

kλν=GνSkβ=(SE)V,N¯((V,N sind nicht anzufassen bei der partiellen Ableitung))kνλνMν,α=hαS(SN)E,N¯=kβTr(HVR)(VN0)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>k</mi><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></msub><mi>S</mi><mo>&#x21D2;</mo><mi>k</mi><mi>&#x03B2;</mi><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>E</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>V</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtext>V</mtext></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mtext>N sind nicht anzufassen bei der partiellen Ableitung</mtext></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>k</mi><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msub><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi><mo>,</mo><mi>&#x03B1;</mi></mrow></mrow></msub><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><msub><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mrow></msub><mi>S</mi></mrow><mo>&#x21D2;</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>S</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>N</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>E</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>N</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mi>k</mi><mi>&#x03B2;</mi><mi data-mjx-texclass="OP" mathvariant="normal">Tr</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>V</mi></mrow></mrow></mfrac></mrow><mi>R</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow></msub><mi>N</mi><mo accent="false">&#x2192;</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Beispiel des Großkanonischen Ensenbles page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results