Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2507.19 on revision:2507

* Page found: Das ideale Gas (eq math.2507.19)

(force rerendering)

Occurrences on the following pages:

Hash: 626380e32d304defed7f2850b5fc5cae

TeX (original user input):

\begin{align}

& \Rightarrow {{e}^{-\Psi }}=Y=\sum\limits_{N=0}^{\infty }{{}}\frac{1}{N!}\exp \left( -\alpha N \right)\frac{1}{{{\hbar }^{3N}}}\int_{V}^{{}}{{}}{{d}^{3}}{{q}_{1}}...\int_{V}^{{}}{{}}{{d}^{3}}{{q}_{N}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}{{p}_{1}}...\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}{{p}_{N}}\exp \left( -\frac{\beta }{2m}\sum\limits_{i}^{{}}{{}}{{p}_{i}}^{2} \right) \\

& =\sum\limits_{N=0}^{\infty }{{}}\frac{1}{N!}\exp \left( -\alpha N \right){{V}^{N}}{{\left[ \frac{1}{{{\hbar }^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}p\exp \left( -\frac{\beta {{p}^{2}}}{2m} \right) \right]}^{N}} \\

& \left[ \frac{1}{{{\hbar }^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}p\exp \left( -\frac{\beta {{p}^{2}}}{2m} \right) \right]=\frac{1}{{{\hbar }^{3}}}{{\left( \frac{2\pi m}{\beta } \right)}^{\frac{3}{2}}}\equiv \Phi \left( \beta  \right) \\

& \Rightarrow {{e}^{-\Psi }}=Y=\sum\limits_{N=0}^{\infty }{{}}\frac{1}{N!}\exp \left( -\alpha N \right){{V}^{N}}{{\left[ \frac{1}{{{\hbar }^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}p\exp \left( -\frac{\beta {{p}^{2}}}{2m} \right) \right]}^{N}}=\sum\limits_{N=0}^{\infty }{{}}\frac{1}{N!}{{\left[ V\Phi \left( \beta  \right){{e}^{-\alpha }} \right]}^{N}} \\

& =\exp \left[ V\Phi \left( \beta  \right){{e}^{-\alpha }} \right] \\

& \Rightarrow {{e}^{-\Psi }}=Y=\exp \left[ V\Phi \left( \beta  \right){{e}^{-\alpha }} \right] \\

\end{align}

TeX (checked):

{\begin{aligned}&\Rightarrow {{e}^{-\Psi }}=Y=\sum \limits _{N=0}^{\infty }{}{\frac {1}{N!}}\exp \left(-\alpha N\right){\frac {1}{{\hbar }^{3N}}}\int _{V}^{}{}{{d}^{3}}{{q}_{1}}...\int _{V}^{}{}{{d}^{3}}{{q}_{N}}\int _{{R}^{3}}^{}{}{{d}^{3}}{{p}_{1}}...\int _{{R}^{3}}^{}{}{{d}^{3}}{{p}_{N}}\exp \left(-{\frac {\beta }{2m}}\sum \limits _{i}^{}{}{{p}_{i}}^{2}\right)\\&=\sum \limits _{N=0}^{\infty }{}{\frac {1}{N!}}\exp \left(-\alpha N\right){{V}^{N}}{{\left[{\frac {1}{{\hbar }^{3}}}\int _{{R}^{3}}^{}{}{{d}^{3}}p\exp \left(-{\frac {\beta {{p}^{2}}}{2m}}\right)\right]}^{N}}\\&\left[{\frac {1}{{\hbar }^{3}}}\int _{{R}^{3}}^{}{}{{d}^{3}}p\exp \left(-{\frac {\beta {{p}^{2}}}{2m}}\right)\right]={\frac {1}{{\hbar }^{3}}}{{\left({\frac {2\pi m}{\beta }}\right)}^{\frac {3}{2}}}\equiv \Phi \left(\beta \right)\\&\Rightarrow {{e}^{-\Psi }}=Y=\sum \limits _{N=0}^{\infty }{}{\frac {1}{N!}}\exp \left(-\alpha N\right){{V}^{N}}{{\left[{\frac {1}{{\hbar }^{3}}}\int _{{R}^{3}}^{}{}{{d}^{3}}p\exp \left(-{\frac {\beta {{p}^{2}}}{2m}}\right)\right]}^{N}}=\sum \limits _{N=0}^{\infty }{}{\frac {1}{N!}}{{\left[V\Phi \left(\beta \right){{e}^{-\alpha }}\right]}^{N}}\\&=\exp \left[V\Phi \left(\beta \right){{e}^{-\alpha }}\right]\\&\Rightarrow {{e}^{-\Psi }}=Y=\exp \left[V\Phi \left(\beta \right){{e}^{-\alpha }}\right]\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (11.723 KB / 834 B) :

eΨ=Y=N=01N!exp(αN)13NVd3q1...Vd3qNR3d3p1...R3d3pNexp(β2mipi2)=N=01N!exp(αN)VN[13R3d3pexp(βp22m)]N[13R3d3pexp(βp22m)]=13(2πmβ)32Φ(β)eΨ=Y=N=01N!exp(αN)VN[13R3d3pexp(βp22m)]N=N=01N![VΦ(β)eα]N=exp[VΦ(β)eα]eΨ=Y=exp[VΦ(β)eα]
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow></msup><mo>=</mo><mi>Y</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>N</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>N</mi><mi>!</mi></mrow></mrow></mfrac></mrow><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mi>&#x03B1;</mi><mi>N</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><mi>N</mi></mrow></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msup><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>N</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>N</mi><mi>!</mi></mrow></mrow></mfrac></mrow><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mi>&#x03B1;</mi><mi>N</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>p</mi><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>p</mi><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi><mi>m</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mo>&#x2261;</mo><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow></msup><mo>=</mo><mi>Y</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>N</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>N</mi><mi>!</mi></mrow></mrow></mfrac></mrow><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mi>&#x03B1;</mi><mi>N</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>p</mi><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msup><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>N</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>N</mi><mi>!</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>V</mi><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>&#x03B1;</mi></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>V</mi><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>&#x03B1;</mi></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow></msup><mo>=</mo><mi>Y</mi><mo>=</mo><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>V</mi><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>&#x03B1;</mi></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das ideale Gas page

Identifiers

  • e
  • Ψ
  • Y
  • N
  • N
  • α
  • N
  • N
  • V
  • q1
  • V
  • qN
  • R
  • p1
  • R
  • pN
  • β
  • m
  • i
  • pi
  • N
  • N
  • α
  • N
  • V
  • N
  • R
  • p
  • β
  • p
  • m
  • N
  • R
  • p
  • β
  • p
  • m
  • π
  • m
  • β
  • Φ
  • β
  • e
  • Ψ
  • Y
  • N
  • N
  • α
  • N
  • V
  • N
  • R
  • p
  • β
  • p
  • m
  • N
  • N
  • N
  • V
  • Φ
  • β
  • e
  • α
  • N
  • V
  • Φ
  • β
  • e
  • α
  • e
  • Ψ
  • Y
  • V
  • Φ
  • β
  • e
  • α

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results