Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2555.86 on revision:2555

* Page found: Das ideale Fermigas (eq math.2555.86)

(force rerendering)

Occurrences on the following pages:

Hash: 4f1a407ae9808503b3a81da5e42d56f4

TeX (original user input):

\begin{align}

& {{F}_{s}}\left( \eta  \right)=\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{{{e}^{y-\eta }}+1} \\

& =\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy{{y}^{s}}\frac{\xi {{e}^{-y}}}{1+\xi {{e}^{-y}}}\approx \frac{1}{\Gamma \left( s+1 \right)}\left[ \xi \int_{0}^{\infty }{{}}dy{{y}^{s}}{{e}^{-y}}-{{\xi }^{2}}\int_{0}^{\infty }{{}}dy{{y}^{s}}{{e}^{-2y}}+.... \right] \\

& \int_{0}^{\infty }{{}}dy{{y}^{s}}{{e}^{-y}}=\Gamma \left( s+1 \right) \\

& \int_{0}^{\infty }{{}}dy{{y}^{s}}{{e}^{-2y}}=\frac{1}{{{2}^{s+1}}}\int_{0}^{\infty }{{}}dz{{z}^{s}}{{e}^{-z}}=\frac{1}{{{2}^{s+1}}}\Gamma \left( s+1 \right) \\

& \Rightarrow {{F}_{s}}\left( \eta  \right)\approx \left[ \xi -{{\xi }^{2}}\frac{1}{{{2}^{s+1}}}+.... \right]\approx \left[ \xi -{{\xi }^{2}}\frac{1}{{{2}^{s+1}}} \right]={{e}^{\frac{\mu }{kT}}}\left[ 1-{{e}^{\frac{\mu }{kT}}}\frac{1}{{{2}^{s+1}}} \right] \\

\end{align}

TeX (checked):

{\begin{aligned}&{{F}_{s}}\left(\eta \right)={\frac {1}{\Gamma \left(s+1\right)}}\int _{0}^{\infty }{}dy{\frac {{y}^{s}}{{{e}^{y-\eta }}+1}}\\&={\frac {1}{\Gamma \left(s+1\right)}}\int _{0}^{\infty }{}dy{{y}^{s}}{\frac {\xi {{e}^{-y}}}{1+\xi {{e}^{-y}}}}\approx {\frac {1}{\Gamma \left(s+1\right)}}\left[\xi \int _{0}^{\infty }{}dy{{y}^{s}}{{e}^{-y}}-{{\xi }^{2}}\int _{0}^{\infty }{}dy{{y}^{s}}{{e}^{-2y}}+....\right]\\&\int _{0}^{\infty }{}dy{{y}^{s}}{{e}^{-y}}=\Gamma \left(s+1\right)\\&\int _{0}^{\infty }{}dy{{y}^{s}}{{e}^{-2y}}={\frac {1}{{2}^{s+1}}}\int _{0}^{\infty }{}dz{{z}^{s}}{{e}^{-z}}={\frac {1}{{2}^{s+1}}}\Gamma \left(s+1\right)\\&\Rightarrow {{F}_{s}}\left(\eta \right)\approx \left[\xi -{{\xi }^{2}}{\frac {1}{{2}^{s+1}}}+....\right]\approx \left[\xi -{{\xi }^{2}}{\frac {1}{{2}^{s+1}}}\right]={{e}^{\frac {\mu }{kT}}}\left[1-{{e}^{\frac {\mu }{kT}}}{\frac {1}{{2}^{s+1}}}\right]\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (77.476 KB / 7.86 KB) :

F s ( η ) = 1 Γ ( s + 1 ) 0 𝑑 y y s e y - η + 1 = 1 Γ ( s + 1 ) 0 d y y s ξ e - y 1 + ξ e - y 1 Γ ( s + 1 ) [ ξ 0 d y y s e - y - ξ 2 0 d y y s e - 2 y + . ] 0 𝑑 y y s e - y = Γ ( s + 1 ) 0 𝑑 y y s e - 2 y = 1 2 s + 1 0 𝑑 z z s e - z = 1 2 s + 1 Γ ( s + 1 ) F s ( η ) [ ξ - ξ 2 1 2 s + 1 + . ] [ ξ - ξ 2 1 2 s + 1 ] = e μ k T [ 1 - e μ k T 1 2 s + 1 ] absent subscript 𝐹 𝑠 𝜂 1 Γ 𝑠 1 superscript subscript 0 differential-d 𝑦 superscript 𝑦 𝑠 superscript 𝑒 𝑦 𝜂 1 absent fragments 1 Γ 𝑠 1 superscript subscript 0 d y superscript 𝑦 𝑠 𝜉 superscript 𝑒 𝑦 1 𝜉 superscript 𝑒 𝑦 1 Γ 𝑠 1 fragments [ ξ superscript subscript 0 d y superscript 𝑦 𝑠 superscript 𝑒 𝑦 superscript 𝜉 2 superscript subscript 0 d y superscript 𝑦 𝑠 superscript 𝑒 2 𝑦 . ] absent superscript subscript 0 differential-d 𝑦 superscript 𝑦 𝑠 superscript 𝑒 𝑦 Γ 𝑠 1 absent superscript subscript 0 differential-d 𝑦 superscript 𝑦 𝑠 superscript 𝑒 2 𝑦 1 superscript 2 𝑠 1 superscript subscript 0 differential-d 𝑧 superscript 𝑧 𝑠 superscript 𝑒 𝑧 1 superscript 2 𝑠 1 Γ 𝑠 1 absent fragments subscript 𝐹 𝑠 fragments ( η ) fragments [ ξ superscript 𝜉 2 1 superscript 2 𝑠 1 . ] fragments [ ξ superscript 𝜉 2 1 superscript 2 𝑠 1 ] superscript 𝑒 𝜇 𝑘 𝑇 fragments [ 1 superscript 𝑒 𝜇 𝑘 𝑇 1 superscript 2 𝑠 1 ] {\displaystyle{\displaystyle\begin{aligned} \par&\displaystyle{{F}_{s}}\left(% \eta\right)=\frac{1}{\Gamma\left(s+1\right)}\int_{0}^{\infty}{{}}dy\frac{{{y}^% {s}}}{{{e}^{y-\eta}}+1}\\ \par&\displaystyle=\frac{1}{\Gamma\left(s+1\right)}\int_{0}^{\infty}{{}}dy{{y}% ^{s}}\frac{\xi{{e}^{-y}}}{1+\xi{{e}^{-y}}}\approx\frac{1}{\Gamma\left(s+1% \right)}\left[\xi\int_{0}^{\infty}{{}}dy{{y}^{s}}{{e}^{-y}}-{{\xi}^{2}}\int_{0% }^{\infty}{{}}dy{{y}^{s}}{{e}^{-2y}}+....\right]\\ \par&\displaystyle\int_{0}^{\infty}{{}}dy{{y}^{s}}{{e}^{-y}}=\Gamma\left(s+1% \right)\\ \par&\displaystyle\int_{0}^{\infty}{{}}dy{{y}^{s}}{{e}^{-2y}}=\frac{1}{{{2}^{s% +1}}}\int_{0}^{\infty}{{}}dz{{z}^{s}}{{e}^{-z}}=\frac{1}{{{2}^{s+1}}}\Gamma% \left(s+1\right)\\ \par&\displaystyle\Rightarrow{{F}_{s}}\left(\eta\right)\approx\left[\xi-{{\xi}% ^{2}}\frac{1}{{{2}^{s+1}}}+....\right]\approx\left[\xi-{{\xi}^{2}}\frac{1}{{{2% }^{s+1}}}\right]={{e}^{\frac{\mu}{kT}}}\left[1-{{e}^{\frac{\mu}{kT}}}\frac{1}{% {{2}^{s+1}}}\right]\\ \par\end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (8.758 KB / 712 B) :

Fs(η)=1Γ(s+1)0dyyseyη+1=1Γ(s+1)0dyysξey1+ξey1Γ(s+1)[ξ0dyyseyξ20dyyse2y+....]0dyysey=Γ(s+1)0dyyse2y=12s+10dzzsez=12s+1Γ(s+1)Fs(η)[ξξ212s+1+....][ξξ212s+1]=eμkT[1eμkT12s+1]

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das ideale Fermigas page

Identifiers

  • Fs
  • η
  • Γ
  • s
  • y
  • y
  • s
  • e
  • y
  • η
  • Γ
  • s
  • y
  • y
  • s
  • ξ
  • e
  • y
  • ξ
  • e
  • y
  • Γ
  • s
  • ξ
  • y
  • y
  • s
  • e
  • y
  • ξ
  • y
  • y
  • s
  • e
  • y
  • y
  • y
  • s
  • e
  • y
  • Γ
  • s
  • y
  • y
  • s
  • e
  • y
  • s
  • z
  • z
  • s
  • e
  • z
  • s
  • Γ
  • s
  • Fs
  • η
  • ξ
  • ξ
  • s
  • ξ
  • ξ
  • s
  • e
  • μ
  • k
  • T
  • e
  • μ
  • k
  • T
  • s

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results