Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2556.3 on revision:2556

* Page found: Das ideale Bosegas (eq math.2556.3)

(force rerendering)

Occurrences on the following pages:

Hash: 353d577f4d03017830cc0cda0c6c150f

TeX (original user input):

\begin{align}
  & P\left( {{N}_{1}},{{N}_{2}},... \right)={{Y}^{-1}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( 1-{{t}_{j}} \right){{t}_{j}}^{{{N}_{j}}}=\prod\limits_{j=1}^{l}{{}}p\left( {{N}_{j}} \right) \\ 
 & (separiert) \\ 
 &  \\ 
 & p\left( {{N}_{j}} \right)=\left( 1-{{t}_{j}} \right){{t}_{j}}^{{{N}_{j}}}=\left( 1-\exp \left( \beta \left( \mu -{{E}_{j}} \right) \right) \right)\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \\ 
 & 1-\exp \left( \beta \left( \mu -{{E}_{j}} \right) \right):={{e}^{{{\Psi }_{j}}}} \\ 
 & p\left( {{N}_{j}} \right)={{e}^{{{\Psi }_{j}}}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \\ 
\end{align}

TeX (checked):

{\begin{aligned}&P\left({{N}_{1}},{{N}_{2}},...\right)={{Y}^{-1}}\exp \left(-\beta \left({{N}_{j}}{{E}_{j}}-\mu {{N}_{j}}\right)\right)=\prod \limits _{j=1}^{l}{}\left(1-{{t}_{j}}\right){{t}_{j}}^{{N}_{j}}=\prod \limits _{j=1}^{l}{}p\left({{N}_{j}}\right)\\&(separiert)\\&\\&p\left({{N}_{j}}\right)=\left(1-{{t}_{j}}\right){{t}_{j}}^{{N}_{j}}=\left(1-\exp \left(\beta \left(\mu -{{E}_{j}}\right)\right)\right)\exp \left(-\beta \left({{N}_{j}}{{E}_{j}}-\mu {{N}_{j}}\right)\right)\\&1-\exp \left(\beta \left(\mu -{{E}_{j}}\right)\right):={{e}^{{\Psi }_{j}}}\\&p\left({{N}_{j}}\right)={{e}^{{\Psi }_{j}}}\exp \left(-\beta \left({{N}_{j}}{{E}_{j}}-\mu {{N}_{j}}\right)\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (62.469 KB / 6.159 KB) :

P ( N 1 , N 2 , ) = Y - 1 exp ( - β ( N j E j - μ N j ) ) = j = 1 l ( 1 - t j ) t j N j = j = 1 l p ( N j ) ( s e p a r i e r t ) p ( N j ) = ( 1 - t j ) t j N j = ( 1 - exp ( β ( μ - E j ) ) ) exp ( - β ( N j E j - μ N j ) ) 1 - exp ( β ( μ - E j ) ) := e Ψ j p ( N j ) = e Ψ j exp ( - β ( N j E j - μ N j ) ) missing-subexpression 𝑃 subscript 𝑁 1 subscript 𝑁 2 superscript 𝑌 1 𝛽 subscript 𝑁 𝑗 subscript 𝐸 𝑗 𝜇 subscript 𝑁 𝑗 superscript subscript product 𝑗 1 𝑙 1 subscript 𝑡 𝑗 superscript subscript 𝑡 𝑗 subscript 𝑁 𝑗 superscript subscript product 𝑗 1 𝑙 𝑝 subscript 𝑁 𝑗 missing-subexpression 𝑠 𝑒 𝑝 𝑎 𝑟 𝑖 𝑒 𝑟 𝑡 missing-subexpression missing-subexpression missing-subexpression 𝑝 subscript 𝑁 𝑗 1 subscript 𝑡 𝑗 superscript subscript 𝑡 𝑗 subscript 𝑁 𝑗 1 𝛽 𝜇 subscript 𝐸 𝑗 𝛽 subscript 𝑁 𝑗 subscript 𝐸 𝑗 𝜇 subscript 𝑁 𝑗 missing-subexpression assign 1 𝛽 𝜇 subscript 𝐸 𝑗 superscript 𝑒 subscript Ψ 𝑗 missing-subexpression 𝑝 subscript 𝑁 𝑗 superscript 𝑒 subscript Ψ 𝑗 𝛽 subscript 𝑁 𝑗 subscript 𝐸 𝑗 𝜇 subscript 𝑁 𝑗 {\displaystyle{\displaystyle\begin{aligned} &\displaystyle P\left({{N}_{1}},{{% N}_{2}},...\right)={{Y}^{-1}}\exp\left(-\beta\left({{N}_{j}}{{E}_{j}}-\mu{{N}_% {j}}\right)\right)=\prod\limits_{j=1}^{l}{{}}\left(1-{{t}_{j}}\right){{t}_{j}}% ^{{{N}_{j}}}=\prod\limits_{j=1}^{l}{{}}p\left({{N}_{j}}\right)\\ &\displaystyle(separiert)\\ &\\ &\displaystyle p\left({{N}_{j}}\right)=\left(1-{{t}_{j}}\right){{t}_{j}}^{{{N}% _{j}}}=\left(1-\exp\left(\beta\left(\mu-{{E}_{j}}\right)\right)\right)\exp% \left(-\beta\left({{N}_{j}}{{E}_{j}}-\mu{{N}_{j}}\right)\right)\\ &\displaystyle 1-\exp\left(\beta\left(\mu-{{E}_{j}}\right)\right):={{e}^{{{% \Psi}_{j}}}}\\ &\displaystyle p\left({{N}_{j}}\right)={{e}^{{{\Psi}_{j}}}}\exp\left(-\beta% \left({{N}_{j}}{{E}_{j}}-\mu{{N}_{j}}\right)\right)\\ \end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.749 KB / 618 B) :

P(N1,N2,...)=Y1exp(β(NjEjμNj))=j=1l(1tj)tjNj=j=1lp(Nj)(separiert)p(Nj)=(1tj)tjNj=(1exp(β(μEj)))exp(β(NjEjμNj))1exp(β(μEj)):=eΨjp(Nj)=eΨjexp(β(NjEjμNj))

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das ideale Bosegas page

Identifiers

  • P
  • N1
  • N2
  • Y
  • β
  • Nj
  • Ej
  • μ
  • Nj
  • j
  • l
  • tj
  • tj
  • Nj
  • j
  • l
  • p
  • Nj
  • s
  • e
  • p
  • a
  • r
  • i
  • e
  • r
  • t
  • p
  • Nj
  • tj
  • tj
  • Nj
  • β
  • μ
  • Ej
  • β
  • Nj
  • Ej
  • μ
  • Nj
  • β
  • μ
  • Ej
  • e
  • Ψj
  • p
  • Nj
  • e
  • Ψj
  • β
  • Nj
  • Ej
  • μ
  • Nj

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results