Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2557.0 on revision:2557

* Page found: Das ideale Bosegas (eq math.2557.0)

(force rerendering)

Occurrences on the following pages:

Hash: 4e210ea75c4435f94fdddd4d04e63171

TeX (original user input):

\begin{align}
  & Y=\sum\limits_{{{N}_{1}}...{{N}_{l}}=0}^{\infty }{{}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}=0}^{\infty }{{}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \right) \\ 
 & =\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{t}_{j}}^{{{N}_{j}}} \right) \\ 
 & {{t}_{j}}:=\exp \left( -\beta \left( {{E}_{j}}-\mu  \right) \right) \\ 
 & Y=\prod\limits_{j=1}^{l}{{}}\frac{1}{1-{{t}_{j}}}=\prod\limits_{j=1}^{l}{{}}{{Y}_{j}} \\ 
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (51.102 KB / 5.151 KB) :

Y = N 1 N l = 0 exp ( - β j = 1 l ( N j E j - μ N j ) ) = j = 1 l ( N j = 0 exp ( - β ( N j E j - μ N j ) ) ) = j = 1 l ( N j = 0 t j N j ) t j := exp ( - β ( E j - μ ) ) Y = j = 1 l 1 1 - t j = j = 1 l Y j missing-subexpression 𝑌 superscript subscript subscript 𝑁 1 subscript 𝑁 𝑙 0 𝛽 superscript subscript 𝑗 1 𝑙 subscript 𝑁 𝑗 subscript 𝐸 𝑗 𝜇 subscript 𝑁 𝑗 superscript subscript product 𝑗 1 𝑙 superscript subscript subscript 𝑁 𝑗 0 𝛽 subscript 𝑁 𝑗 subscript 𝐸 𝑗 𝜇 subscript 𝑁 𝑗 missing-subexpression absent superscript subscript product 𝑗 1 𝑙 superscript subscript subscript 𝑁 𝑗 0 superscript subscript 𝑡 𝑗 subscript 𝑁 𝑗 missing-subexpression assign subscript 𝑡 𝑗 𝛽 subscript 𝐸 𝑗 𝜇 missing-subexpression 𝑌 superscript subscript product 𝑗 1 𝑙 1 1 subscript 𝑡 𝑗 superscript subscript product 𝑗 1 𝑙 subscript 𝑌 𝑗 {\displaystyle{\displaystyle\begin{aligned} &\displaystyle Y=\sum\limits_{{{N}% _{1}}...{{N}_{l}}=0}^{\infty}{{}}\exp\left(-\beta\sum\limits_{j=1}^{l}{{}}% \left({{N}_{j}}{{E}_{j}}-\mu{{N}_{j}}\right)\right)=\prod\limits_{j=1}^{l}{{}}% \left(\sum\limits_{{{N}_{j}}=0}^{\infty}{{}}\exp\left(-\beta\left({{N}_{j}}{{E% }_{j}}-\mu{{N}_{j}}\right)\right)\right)\\ &\displaystyle=\prod\limits_{j=1}^{l}{{}}\left(\sum\limits_{{{N}_{j}}=0}^{% \infty}{{}}{{t}_{j}}^{{{N}_{j}}}\right)\\ &\displaystyle{{t}_{j}}:=\exp\left(-\beta\left({{E}_{j}}-\mu\right)\right)\\ &\displaystyle Y=\prod\limits_{j=1}^{l}{{}}\frac{1}{1-{{t}_{j}}}=\prod\limits_% {j=1}^{l}{{}}{{Y}_{j}}\\ \end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.921 KB / 560 B) :

Y=N1...Nl=0exp(βj=1l(NjEjμNj))=j=1l(Nj=0exp(β(NjEjμNj)))=j=1l(Nj=0tjNj)tj:=exp(β(Ejμ))Y=j=1l11tj=j=1lYj

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das ideale Bosegas page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results