Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2665.30 on revision:2665

* Page found: Klein Gordon im (Vektor)Potential, Eichinvarianz (eq math.2665.30)

(force rerendering)

Occurrences on the following pages:

Hash: 4cfceb80761c4b32663b06ad5499a033

TeX (original user input):

\begin{align}

& {{{\underline{D}}}_{\varphi }}\Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}=\left( \underline{\nabla }\Psi  \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}+\Psi \mathfrak{i} \left( \underline{\nabla }\varphi  \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)\quad ={{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}\left( {{{\underline{D}}}_{\varphi }}+\mathfrak{i} \underline{\nabla }\varphi  \right)\Psi  \\

& D_{\varphi }^{0}\Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}=\quad \quad \quad \quad \quad \quad ={{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}\left( \underline{D}_{\varphi }^{0}+\mathfrak{i} {{\partial }_{t}}\varphi  \right)\Psi  \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\underline {D}}_{\varphi }}\Psi \left({\underline {x}},t\right){{e}^{{\mathfrak {i}}\varphi \left({\underline {x}},t\right)}}=\left({\underline {\nabla }}\Psi \right){{e}^{{\mathfrak {i}}\varphi \left({\underline {x}},t\right)}}+\Psi {\mathfrak {i}}\left({\underline {\nabla }}\varphi \right){{e}^{{\mathfrak {i}}\varphi \left({\underline {x}},t\right)}}+{{\underline {f}}_{\varphi }}\left({\underline {x}},t\right)\quad ={{e}^{{\mathfrak {i}}\varphi \left({\underline {x}},t\right)}}\left({{\underline {D}}_{\varphi }}+{\mathfrak {i}}{\underline {\nabla }}\varphi \right)\Psi \\&D_{\varphi }^{0}\Psi \left({\underline {x}},t\right){{e}^{{\mathfrak {i}}\varphi \left({\underline {x}},t\right)}}=\quad \quad \quad \quad \quad \quad ={{e}^{{\mathfrak {i}}\varphi \left({\underline {x}},t\right)}}\left({\underline {D}}_{\varphi }^{0}+{\mathfrak {i}}{{\partial }_{t}}\varphi \right)\Psi \\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.953 KB / 556 B) :

D_φΨ(x_,t)eiφ(x_,t)=(_Ψ)eiφ(x_,t)+Ψi(_φ)eiφ(x_,t)+f_φ(x_,t)=eiφ(x_,t)(D_φ+i_φ)ΨDφ0Ψ(x_,t)eiφ(x_,t)==eiφ(x_,t)(D_φ0+itφ)Ψ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><munder><mi>D</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>&#x03C6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>&#x03C6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msup><mo>+</mo><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow><mi>&#x03C6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>&#x03C6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msup><mo>+</mo><msub><mrow data-mjx-texclass="ORD"><munder><mi>f</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>&#x03C6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><munder><mi>D</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><munder><mi mathvariant="normal">&#x2207;</mi><mo>_</mo></munder></mrow><mi>&#x03C6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi></mtd></mtr><mtr><mtd></mtd><mtd><msubsup><mi>D</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msubsup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>&#x03C6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msup><mo>=</mo><mspace width="1em"></mspace><mspace width="1em"></mspace><mspace width="1em"></mspace><mspace width="1em"></mspace><mspace width="1em"></mspace><mspace width="1em"></mspace><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><mi>&#x03C6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><munder><mi>x</mi><mo>_</mo></munder></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msubsup><mrow data-mjx-texclass="ORD"><munder><mi>D</mi><mo>_</mo></munder></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C6;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msubsup><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi mathvariant="fraktur">i</mi></mrow></mrow><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mi>&#x03C6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Klein Gordon im (Vektor)Potential, Eichinvarianz page

Identifiers

  • D_φ
  • Ψ
  • x_
  • t
  • e
  • i
  • φ
  • x_
  • t
  • Ψ
  • e
  • i
  • φ
  • x_
  • t
  • Ψ
  • i
  • φ
  • e
  • i
  • φ
  • x_
  • t
  • f_φ
  • x_
  • t
  • e
  • i
  • φ
  • x_
  • t
  • D_φ
  • i
  • φ
  • Ψ
  • D
  • φ
  • Ψ
  • x_
  • t
  • e
  • i
  • φ
  • x_
  • t
  • e
  • i
  • φ
  • x_
  • t
  • D_
  • φ
  • i
  • t
  • φ
  • Ψ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results