Magnetisches Moment und Zeeman- Effekt

Aus PhysikWiki
Version vom 12. September 2010, 23:43 Uhr von *>SchuBot (Interpunktion, replaced: ! → ! (4), ( → ( (2))
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen




Hamilton- Operator mit äußerem Magnetfeld:

H=12m0(p¯eA¯)2+V(r)

mit kugelsymmetrischem Potenzial

Durch den kinetischen Impulsoperator: (p¯eA¯)

ist der Einfluss von äußeren Feldern auf den Bahndrehimpuls schon in der Gleichungen enthalten. Es folgt bereits der Zeemann Effekt aus dem gemachten Ansatz. Würde man dagegen auf Effekte hoffen, die erst angesichts des Spins von Elektronen auftreten, so wäre dies vergebens. Effekte des Spins sind in die Gleichung noch nicht eingebaut!

H=12m0(p¯22eA¯p¯+e2A¯2)+V(r)

Verwende: Coulombeichung: A¯=0

A¯p¯=p¯A¯

für Operatoren

e2A¯2

sei für Atome vernachlässigbar, falls L30 ,

falls B<105G

vergl. Schwabl S. 128

Homogenes Magnetfeld: A¯=12(B¯×r¯)

wegen B¯=×A¯=12(B¯(r¯))12(B¯)r¯=12(×(B¯×r¯))=B¯

Da ja (r¯)=3,(B¯)r¯=B¯

Somit:

i(A¯Ψ)=2i(B¯×r¯)Ψ=2iB¯(r¯×)Ψ=12(B¯L¯)Ψ

Sei

B¯=(0,0,B)B¯L¯=BL3

Schrödinger- Gleichung:

22m0ΔΨ+(VEe2m0BL3)Ψ=0L3Ψ=mΨ

Wobei

L3Ψ=mΨ

für Drehimpuls- Eigenzustände

22m0ΔΨ+(V(r)Ee2m0mB)Ψ=0

mit

e2m0m:=μ3

(magnetisches Moment)

Klassisch:

μ¯=HB¯=e2m0L¯

Der Term im Hamiltonian der magnetischen Wechselwirkung.

Hmag.=μBB¯=eB¯L¯2m0=eBL32m0μB=e2m0

Normaler Zeeman- Effekt:

Atom im homogenen Magnetfeld:

(H0Eμ3B)Ψ=0

H0: Hamiltonoperator ohne B- Feld

e2m0m:=μ3
e2m0:=μB

Bohrsches Magneton: e<0

H0Ψnlm=EnlΨnlm
E=EnleB2m0m

→ Die m- Entartung wird vollständig aufgehoben

Das heißt: für jedes m ergibt sich eine eigene Energie!

m=l,...,+l

→ Aufspaltung in 2l+1

- Niveaus (Multipletts) mit m = magnetische Quantenzahl

Achtung! Die l- Entartung wird keineswegs aufgehoben. Allerdings ist natürlich m abhängig von l

Nebenbemerkung: Anomaler Zeeman- Effekt → Effekt des Spins (vergl. nächstes Kapitel)

H- Atom: l- Entartung

Atome mit ungerader Kernladungszahl: Spin- Bahn - Zustände!