Eichtransformation der Lagrangefunktion

Aus PhysikWiki
Version vom 12. September 2010, 16:26 Uhr von *>SchuBot (Einrückungen Mathematik)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen



Uneindeutigkeit der Lagrangefunktion

Die Lagarangefunktion wird duch die Lagrangegleichung nicht eindeutig festgelegt.

Betrachten wir beispielsweise ein geladenes Teilchen im elektrischen Feld:


(q1,q2,q3)=(x1,x2,x3)


e sei die Ladung

Bewegungsgleichung:


md2dt2(q1,q2,q3)=mq¯¨=eE¯(q¯,t)+eq¯˙×B¯(q¯,t)


Die Lorentzkraft ist typischerweise nicht konservativ

Die Darstellung des elektrischen und magnetischen Feldes erfolgt über die Potenziale:


E¯(q¯,t)=Φ(q¯,t)tA¯(q¯,t)B¯(q¯,t)=×A¯(q¯,t)


Dabei ist Φ Skalar und A ein Vektorpotenzial (MKSA- System)

Ziel: Suche eine Lagrangefunktion L(q,q˙,t)=TV in der Art, dass LqkddtLq˙k=0


Die Bewegungsgleichung

md2dt2(q1,q2,q3)=mq¯¨=eE¯(q¯,t)+eq¯˙×B¯(q¯,t)

ergeben.

Ansatz:


L(q,q˙,t)=m2q¯˙2+e(q¯˙A¯(q¯,t)Φ(q¯,t))


Probe:


Lq˙k=mq˙k+eAkddtLq˙k=mq¨k+eddtAk(q¯(t),t)ddtLq˙k=mq¨k+e(tAk+lAkqlq˙l)ddtLq˙k=mq¨k+e(tAk+(q¯˙)Ak)


Weiter:


Lqk=e[qk(q¯˙A¯)qkΦ]


Somit:


0=LqkddtLq˙k=mq¨k+e(tAk+(q¯˙)Ak)e[qk(q¯˙A¯)qkΦ]=mq¨k+e(tAk+qkΦ)+e[qk(q¯˙A¯)+(q¯˙)Ak]=mq¨keEk[eq¯˙×(×A¯)]k=mq¨keEk[eq¯˙×B¯]k


Somit erfüllt unser Ansatz die Bewegungsgleichungen

Eichtransformationen

Die Potenziale lassen sich umeichen mit Hilfe der Eichfunktion

χ:


A¯(q¯,t)A¯´(q¯,t)=A¯(q¯,t)+χ(q¯,t)Φ(q¯,t)Φ´(q¯,t)=Φ(q¯,t)tχ(q¯,t)


Durch Einsetzen sieht man schnell, dass sich die Felder nicht ändern:


E¯´(q¯,t)=Φ´(q¯,t)tA¯´(q¯,t)=(Φ(q¯,t)tχ(q¯,t))t(A¯(q¯,t)+χ(q¯,t))=E¯(q¯,t)B¯´(q¯,t)=×A¯´(q¯,t)=×(A¯(q¯,t)+χ(q¯,t))=B¯(q¯,t)


Betrachten wir die Lagrangefunktion, so ergibt sich:


L´(q,q˙,t)=m2q¯˙2+e(q¯˙A¯´(q¯,t)Φ´(q¯,t))L´(q,q˙,t)=m2q¯˙2+e(q¯˙A¯(q¯,t)+q¯˙χΦ(q¯,t)+χ˙)L´(q,q˙,t)=L+e(χ˙+q¯˙χ)´=L+ddt(eχ(q¯,t))


Einsetzen zeigt: L´ führt zu denselben Lagrangegleichungen wie L.


Die Eichtransformation
L(q,q˙,t)L´(q,q˙,t)=L+ddt(M(q¯,t))

mit einer beliebigen Eichfunktion M (skalar) läßt die Lagrangegleichungen invariant.


Allgemein gilt:

Sei M(q¯,t)=M(q1,...,qf,t)C3 beliebig und

L´(q,q˙,t)=L+(M˙+q¯˙M)=L+ddt(M(q¯,t))L´(q,q˙,t)=L+k=1fMqkq˙k+Mt


dann erfüllen die


{qk(t)}
das hamiltonsche Prinzip

Also:


δL´dt=0δLdt=0


Das bedeutet, die Euler- Lagrangegleichungen sind invariant unter Transformationen der Art

L(q,q˙,t)L´(q,q˙,t)=L+ddt(M(q¯,t)) mit M(q¯,t)=M(q1,...,qf,t)C3

beliebig.

Beweis:

L´qkddtL´q˙k=Lqk+qk(l=1fMqlq˙l+Mt)ddtLq˙kddtq˙k(l=1fMqlq˙l+Mt)=LqkddtLq˙k+qkdMdtddtMqk=LqkddtLq˙k mit q˙k(l=1fMqlq˙l+Mt)=Mqk


Einzige Nebenbedingung:


M(q¯,t)=M(q1,...,qf,t)C3

darf nicht explizit von

q˙k

abhängen.


Beispiel: eindimensionaler Oszi


L=TV=m2q˙2mω22q2


Beispielhafte Eichfunktion:

M(q):=mω22q2dMdt=mω2qq˙


L´=m2q˙2mω22(q22qq˙)


Die Lagrangegleichungen lauten:

ddtL´q˙=mq¨+mω2q˙L´qk=mω2q+mω2q˙


Es folgt als Bewegungsgleichung

q¨+ω2q=0