Symplektische Struktur des Phasenraums
Der Artikel Symplektische Struktur des Phasenraums basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 4.Kapitels (Abschnitt 4) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
Da die kanonischen Transformationen generalisierte Koordinaten und Impulse ineinander transformieren können, sollten q und p nicht gegeneinander ausgezeichnet sein. Um diese Symmetrie des kanonischen Formalismus auszuzeichnen, wird eine neue Notation eingeführt.
Sei zunächst f= 1
ist Vektor im Phasenraum
ist Ableitungsvektor
ist Metrik im Phasenraum (metrischer Tensor)
In diesem Fall lassen sich die kanonischen Gleichungen vereinfacht schreiben als:
Leicht läßt sich zeigen:
Verallgemeinerung auf mehr Freiheitsgrade
Die kanonischen Gleichungen lauten
Beispiel ist ein lineares autonomes System in einer Dimension, also der verallgemeinerte eindimensionale harmonische Oszillator:
Diese Gleichung ist abzuleiten aus der Hamiltonfunktion:
Somit ergibt sich eine Einschränkung an die Matrix A:
Dies gilt für Hamiltonsche Systeme! (Einschränkung an die Dynamik im Phasenraum)
Kanonische Transformationen in kompakter Notation
Aus den 4 Äquivalenten Formen der Erzeugenden für kanonische Transformationen folgt:
Dabei sind:
Beweis:
Damit läßt sich eine einheitliche Schreibweise finden für die Relationen aller Erzeugenden:
Beweis:
In Matrixform lautet diese Gleichung:
Die linke Seite (M) lautet:
Die rechte Seite lautet:
Die Matrixform für die Erzeugenden läßt sich folgendermaßen äquivalent umformen:
Dabei ist J der metrische Tensor und M die Matrix der 2. Ableitungen der Erzeugenden der kanonischen Transformation, also die Jacobi- Matrix für die Erzeugenden der kanonischen Trafo.
Dies bedeutet jedoch nichts anderes als: Die Metrik im Phasenraum ist invariant unter kanonischen Transformationen!
J definiert dabei eine Metrik über das verallgemeinerte schiefsymmetrische Skalarprodukt:
es handelt sich dabei um eine schiefsymmetrische, nichtentartete Bilinearform
Eigenschaften:
- Schiefsymmetrie:
Beweis:
- bilinear:
- nichtentartet:
Nebenbemerkung: Es gilt:
Also Selbstorthogonalität
Beweis:
Die Symplektische Struktur auf dem
ist von einer euklidischen Metrik grundsätzlich zu unterscheiden:
Mit dem metrischen Tensor g, einer 2fx2f dimensionalen Einheitsmatrix!
Im Euklidischen gelten jedoch die Relationen:
Definition:
Die Menge der Matrizen M (kanonische Trafo) mit
bildet die reelle symplektische Gruppe S über
Dies ist die Symmetriegruppe der symplektischen Struktur.
Gruppeneigenschaften
1.
Beweis:
2. Assoziativität (matrixmultiplikation!)
3. Einselement Einheitsmatrix!
- Inverse:
Beweis:
Dabei gilt :
Beweis: Übungsaufgabe
- Weiter gilt:
Beweis: Übungsaufgabe oder Scheck, S. 102
Fazit:
Die Invarianz der kanonischen Gleichungen
kann durch di symplektische Struktur des Phasenraums beschrieben werden: