Polarisation
Der Artikel Polarisation basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 5.Kapitels (Abschnitt 1) der Elektrodynamikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
Materie enthält mikroskopische elektrisch geladene Bausteine
- freie Ladungsträger
Elektronen in Metallen, Elektronen + Löcher in Halbleitern
- Beschleunigung in äußeren Feldern, E- Felder, B- Felder über Ohmsches Gesetz und Lorentz-kraft
- gebundene Ladungen ( In Isolatoren)
- Polarisierung im E- Feld
- Für E =0 vorhandene mikroskopische Dipole p werden zur Minimierung der potenziellen Energie
Wel.=-p E vorzugsweise ( entgegen der zufälligen thermischen Bewegung) parallel zu E orientiert ( z.B. bei polarisierten Molekülen, Wasser etc... gut zu beobachten !)
- Nicht- polare Atome oder Moleküle werden dann durch E durch Verschiebung der Ladungswolken polarisiert. Es entstehen induzierte elektrische Dipole, die zu E parallel ausgerichtet sind:
nach Einschalten des Feldes. Es werden in den Atomen/ Molekülen positive und negative Ladungen getrennt !
Makroskopische räumliche Mittelung
Netto- Ladungen entstehen dadurch an den Grenzflächen
Dies erzeugt im Inneren ein Polarisationsgegenfeld
gemäß
Das resultierende Gesamtfeld lautet:
Mit der freien Ladungsdichte
Also:
Die Polarisation selbst bestimmt sich nach
ein makroskopisches lokales Feld, dessen Quelle Polarisationsladungen sind.
Somit:
Als Dielektrische Verschiebung bezeichnen wir
Dies ist die effektive makroskopische Feldgröße, als dessen Quellen nur noch die freien Ladungen ( ohne Polarisationsladungen) auftreten:
Wir bezeichnen mit
die Polarisationsladung, die beim Übergang vom unpolarisierten zum polarisierten Zustand durch die Fläche df verschoben wird:
Denn ( bei Betrachtung eines Volumens V, das durch df begrenzt ist):
= Polarisationsladung, die V verläßt !
Zusammenhang mikroskopische elektrische Dipole / makroskopische Größen:
( mikroskopische Ladungsdichte)
( mikroskopische Dipoldichte) mit:
Mittelung über ein kleines makroskopisches Volumen
Längenskala der makroskopischen Dichtevariation
Somit:
( makroskopische Ladungsdichte)
Also: Die makroskopische Dipoldichte ist GLEICH DER POLARISATION !!
Beweis:
Betrachten wir das mikroskopische retardierte Potenzial:
wobei unter dem Integral die mikroskopische Ladungsdichte einzusetzen ist !
Das makroskopisch gemittelte Potenzial folgt dann gemäß
Wobei
Die makroskopische Ladungsdichte ist !
Analog:
Das mikroskopische Potenzial der elektrischen Dipole
mit dem mikroskopischen Dipolmoment
Analog:
mit der mikroskopischen Dipoldichte
Somit ergibt sich für das makroskopisch gemittelte elektrische Potenzial:
Umformung:
Dabei haben wir das Problem , dass beim Übergang zur gestrichenen Ableitung hier auch nach dem Argument r´ von P abgeleitet wird. Also müssen wir dies wieder abziehen:
Also folgt für das Potenzial:
Dies ist das makroskopische Potenzial einer Polarisationsladungsdichte
Damit können wir die makroskopische Dipoldichte
mit der durch
bzw.
definierten Polarisation identifizieren.