Entropie von Gleichgewichtszuständen

Aus PhysikWiki
Version vom 12. September 2010, 23:50 Uhr von *>SchuBot (Interpunktion, replaced: <→ → ↔ (2), ! → ! (9), ( → ( (10))
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen




Einheitliche Notation für klassische Mechanik und QM:

M^=dξρ(ξ)M(ξ)=tr(ρ^M^)


Definition:

Extensive thermodynamische Variablen sind additiv bei Systemzusammensetzung:

Gesamtsystem: Σ=Σ1+Σ2

Extensive Variablen: M=MI+MII



Beispiele:
V
Volumen V
U
innere Energie U
N
Teilchenzahl N
M
Magnetisierung M
Q
Elektrische Ladung Q
U,N,M,Q~V
alle Variablen ~ V (" extension of system")


Definition

Intensive thermodynamische Variablen nehmen bei thermodynamischem Gleichgewicht zwischen 2 Subsystemen den gleichen Wert an:

Intensive Variablen: λ=λI=λII


(folgt aus verallgemeinerter kanonischer Verteilung).


Beispiele:
p
Druck p (mechanisches Gleichgewicht)
T
Temperatur T (thermodynamisches Gleichgewicht)


Allgemein:

λn heißt thermodynamisch konjugierte intensive Kontaktvariable Mn (Lagrange- Multiplikatoren)

Nebenbemerkung:

Die aus den intensiven Variablen Mn gebildeten Dichten

MnV=mn sind intensiv!

Aber sind dennoch keine thermodynamisch konjugierten Kontaktvariablen!

Satz:

Sind 2 Systeme im Gleichgewicht mit einem 3. System, so sind sie auch untereinander im Gleichgewicht ("Transitivität")

(folgt aus der Gleichheit der intensiven Parameter)

Absolutes Gleichgewicht
Alle Systeme sind miteinander im Gleichgewicht
Relatives Gleichgewicht
Subsysteme sind in sich im Gleichgewicht, jedoch nicht untereinander!(gehemmtes Gleichgewicht)


Thermodynamisches Prinzip: Zu jeder extensiven thermodynamischen Variable Mn gibt es eine Wand oder "Hemmung", die bezüglich deren Austausch isolierend ist!


Beispiel:
V
→ unverschiebbare Wand
T
→ isolierende Wand
N
→ nichtpermeable Wand
Q
→ elektrisch isolierende Wand
Explosives Gas
Gehemmtes Gleichgewicht der chemischen Komponenten bis zur Zündung/ Zugabe eines Katalysators


Einführung einer weiteren extensiven thermodynamischen Größe:

Entropie S→ Existenz irreversibler Prozesse

 Entropie Postulat (Clausius, 1860):
Zu jedem isolierten thermodynamischen System gibt es eine eindeutige Zustandsfunktion
S(M1,...,Mm), die mit wachsender Zeit nicht abnimmt!


Definition Zustandsfunktion

hängt nur vom gegenwärtigen thermodynamischen Zustand, nicht jedoch von der Vorgeschichte (also von der Prozessführung) ab!


Verknüpfung der Statistik mit der phänomenologischen Thermodynamik

Zusammenhang zwischen Entropie und Informationsunkenntnis nach Shannon


S(Mn)=kI(Mn) (Fundamentalzusammenhang)


S
Entropie
k
k= 1,321023JK= Boltzmann- Kosntante
I
fehlende Kenntnis nach Shannon

I = Shannon- Information(kann nach der letzten Messung nicht zunehmen!) eindeutig abhängig von Mn durch das Prinzip der vorurteilsfreien Schätzung:S=!=max.

→ statistische Begründung der Gleichgewichtsthermodynamik!

Eigenschaften der Entropiegrundfunktion S(Mn):

  1. I(Mn) ist additiv für unkorrelierte Subsysteme → S(Mn) ist extensiv
  2. Gibbsche Fundamentalgleichung]
dS(Mn)=kλndMnS(Mn)Mn=kλn


Anwendung: Kanonische Verteilung

dS(Mn)=kβdUS(Mn)U=kβ=:1T


Definition der absoluten Temperatur T:
β=1kT


Somit ist β die thermodynamisch konjugierte intensive Variable zu U

  • Bei Energieaustausch zwischen 2 Subsystemen ist T im Gleichgewicht gleich!
Quasistatischer Prozess (reversibel)
Folge von Gleichgewichtszuständen.
Voraussetzung: Zeitskalentrennung zwischen Prozessgeschwindigkeit und Gleichgewichtseinstellung möglich!
Arbeitskoordinaten (äußere Parameter)
Extensive thermodynamische Variable, durch die ohne Änderung der materiellen Zusammensetzung von außen auf das System eingewirkt wird:


Beispiel: Volumen V: Gas in Volumen V kann durch Kolben komprimiert werden!

Quasistatisch geleistete Arbeit am System:

δW=pdV>0fu¨rdV<0

also bei Kompression!

p: Druck: instantaner, räumlich homogener Wert, falls Gleichgewichtszustände durchlaufen werden (quasistatisch).


Druckensemble

U=tr(ρ^H),β=1kTU=tr(ρ^V^)=V,λ2=??

das Volumen fluktuiert!

ρ^=exp(ΨβHλ2V)dS=kβdU+kλ2dVkβ=1Tλ2=pkT


Definition Druck
(SV)U=kλ2:=pT


dann gilt in Übereinstimmung mit der phänomenologischen Thermodynamik:

dS=dUT+pdVTdU=TdSpdV

Dabei:

Satz:

dU=δQ+δW

Erster Hauptsatz der Thermodynamik (Energieerhaltungssatz)



δQ
Vom System reversibel aufgenommene Wärmemenge
δW
Vom System quasistatisch geleistete Arbeit


Nebenbemerkung:

Q und W sind keine Zustandsfunktionen, daher keine exakten Funktionale δQ und δW


  • Energiezustandsfunktion eines einfachen thermischen Systems U(S,V)

Zur Unterscheidung der Differenziale dU und δQ,δW

dU ist totales (= exaktes) Differenzial einer Zustandsfunktion U(z1,z2,....)

Dagegen ist δQ eine Pfaffsche Differenzialform}

δQ=ngn(z1,z2,...,)dzn

Exakte Differenziale sind dabei spezielle Differenzialformen:

df=ngndzngn=fzn

Es gilt: i) Satz:

df ist exakt ↔ gmzn=gnzm (Integrabilitätsbedingung)

Beweis:

Beweis:

" → "

2fznzm=2fzmzn

"<-"

Aus

gnzm=gmznfu¨rΨ:=dzngnΨzm=dzngnzm=dzngmzn=dgm=gm

Also:

Ψ=fgn=fzn


ii) df ist exakt ↔ df=0


iii) Integrierender Faktor

Falls δa kein exaktes Differenzial, aber ρ(z) existiert, so dass ρ(z)δa=df exaktes Differenzial, dann heißt ρ(z) integrierender Faktor:

ρgn=fzn

Zusammenfassung

verallgemeinerte kanonische Verteilung
ρ^=exp(ΨλnMn)
Entropie
S(Mn)=ktr(ρlnρ)=k(λnMnΨ)
Verallgemeinerte relation zwischen den extensiven Variablen Mn und dem thermodynamisch konjugierten intensiven Parametern λn
Ψλn=MnΨ(λn)=lntr(eλnMn)
Gibbsche Fundamentalrelation
dS(Mn)=kλndMn
phänomenologische Definition der intensiven Variablen
SMn=kλn

Siehe auch

Skript ab Seite 42