Das Photonengas im Strahlungshohlraum
Der Artikel Das Photonengas im Strahlungshohlraum basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 5.Kapitels (Abschnitt 4) der Thermodynamikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
Betrachte: elektromagnetische Strahlung in einem ladungs- und stromfreien Hohlraum im thermischen Gleichgewicht:
Ebene Wellen als Lösung der Maxwell- Gleichung!
Mit:
Also: E- Feld, B- Feld und Ausbreitungsrichtung stehen senkrecht aufeinander!
Quantisierung des elektromagnetischen Feldes:
betrachte elektromagnetisches Feld als Feld von Oszillatoren mit Frequenz
Interpretation von nq als Zahl der Schwingungsquanten oder Photonen mit der Energie und mit dem Impuls !
Photonen sind Bosonen (da nq=0,1,2,3,4,5,.... möglich!)
mit Spin S=1.
Aber:
Entartungsgrad nur 2: 2 Spinzustände!, entsprechend 2 Polarisationsrichtungen:
linkszirkular und rechtszirkulare Polarisation! der klassischen elektromagnetischen Welle!
Bei linkszirkularer Polarisation gilt:
Bei rechtszirkularer Polarisation gilt:
Die dritte Einstellmöglichkeit tritt nicht auf, da es keine "longitudinalen" Photonen gibt! (longitudinale Wellen!)
Lichtgeschwindigkeit ist c, da m0=0 (Ruhemasse)=0
Im thermischen Gleichgewciht des Photonengases mit den Wänden ("Hohlraumstrahlung") werden ständig Photonen emittiert und absorbiert!
Ihre Anzahl ist deshalb bereits durch T und V festgelegt und daher keine unabhängige Nebenbedingung!
-> kanonisches Ensemble!
Formal:
Setze in der Boseverteilung (chemisches Potenzial verschwindet)
Dabei kommt der Vorfaktor 2 wegen den beiden möglichen Polarisationsrichtungen!
Übergang zum Quasi- Kontinuum!
Zustandsdichte der Photonen
Somit folgt die Zustandsdichte der Photonen als:
Dabei ist die Energie ein mit dem Volumen skalierter Wert einer spektralen Energiedichte, die über alle Frequenzen integriert wird.
Dem entsprechend ist der Wert der spektralen Energiedichte, die
Plancksche Strahlungsformel |
Grenzfälle
klassisches Resultat, Rayleigh- Jeans- Gesetz richtig für ,
aber: Infrarot- Katastrophe!
W. Wien: empirisches Resultat für !
für irdische Lichtquellen, versagt jedoch für Sonne und Fixsterne!
Plancksche Ableitung der Strahlungsformel (1900):
Postulat:
Strahlungsenergie gequantelt gemäß
in Zustandssumme!
Damit konnte M. Planck erstmals die Strahlung schwarzer Körper (also vollständig absorbierender Strahlungshohlräume im thermodynamischen Gleichgewicht) erklären!
Er konnte damit auch zwischen Rayleigh- Jeans und Wien interpolieren!
- historischer Ausgangspunkt der Quantenmechanik!!
Maximum der spektralen Energiedichte für
Wiensches Verschiebungsgesetz
Hier sieht man den Verlauf für T=100, 200, 300, 400 K:
Gesamtenergie
Gewinnt man durch Integration über alle Frequenzen:
Also das Integral unter den obigen Kurven mal das Volumen des Hohlraums!
Auch für einen Strahlungshohlraum lassen sich Wärmekapazität, Druck etc.. angeben:
Wärmekapazität:
Strahlungsdruck im Hohlraum
Aus
folgt mit der kanonischen Zustandssumme Z:
Dies ist keineswegs Null, denn: mit dem Volumen V ändert sich die Frequenz einer stehenden Welle:
Der Strahlungsdruck!
Also:
Das heißt: In einem Hohlraum steigt der Strahlungsdruck mit der vierten Potenz der Temperatur!
Betrachtet man dies in N/ m², so ergibt sich:
Im Zentrum der Sonne allerdings herrschen
bar Strahlungsdruck!:
Einsteinsche Ableitung der Planckschen Strahlungsformel
(1917)
Einstein hatte den begriff "Photon" im Zusammenhang mit dem Photoeffekt entwickelt. Im Strahlungshohlraum seien 2 Niveau- Atome, die zwischen den Energien E1 und E2 mit Entartungsgrade g1 und g2 Strahlungsübergänge machen können, indem sie Photonen der Energie absorbieren oder emittieren!
Im thermodynamischen Gleichgewicht gilt für die mittleren Besetzungszahlen der elektronischen Atomniveaus (Fermionen):
Dabei gilt für die Besetzungswahrscheinlichkeiten:
Im thermischen Gleichgewicht werden im Mittel so viele Photonen emittiert wie absorbiert:
Ansatz für die Raten (= Anzahl der Übergänge pro Zeit und Volumen)_
1) Absorption:
mit der Photonenzahl u:
Man erhält als mittlere Lebensdauer eines Anregungszustandes:
Diese wurde von Einstein neu eingeführt!
- Grundlage der Maser (1954) und Laser (1961)
Vergleichsweise zum chemischen Massenwirkungsgesetz (Kapitel 4.5) gewinnt man schließlich eine Bilanzgleichung mit den "Einstein- Koeffizienten" B12, A21 und B21:
Auf das richtige Plancksche Strahlungsgesetz kommt man über 2 zusätzliche Postulate:
Damit muss man das Strahlungsgesetz in der Form
schreiben können. Die Bose-Einstein-Verteilung ist also bereits herausgekommen!
das heißt: für hohe Temperaturen sollte das Strahlungsgesetz in das Rayleigh-Jeans-Gesetz übergehen!
Damit gewinnt man den Faktor a!
Verallgemeinerung
kann auf Elektronensysteme im Nichtgleichgewicht geschehen!
Wie bei Photonen nur mit effektivem chemischem Potenzial
Anwendung: Laser!