Hamilton-Jacobische Differenzialgleichung: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
*>SchuBot
Einrückungen Mathematik
*>SchuBot
Einrückungen Mathematik
Zeile 4: Zeile 4:




<math>\bar{H}\equiv 0</math>
:<math>\bar{H}\equiv 0</math>




Zeile 10: Zeile 10:




<math>{{M}_{2}}(\bar{q},\bar{P},t)=:S</math>
:<math>{{M}_{2}}(\bar{q},\bar{P},t)=:S</math>




Zeile 16: Zeile 16:




<math>\begin{align}
:<math>\begin{align}
   & (\bar{q},\bar{p})\to \left( \bar{Q},\bar{P} \right) \\
   & (\bar{q},\bar{p})\to \left( \bar{Q},\bar{P} \right) \\
  & H(\bar{q},\bar{p},t)\to \bar{H}\left( \bar{Q},\bar{P} \right)=H+\frac{\partial S}{\partial t} \\
  & H(\bar{q},\bar{p},t)\to \bar{H}\left( \bar{Q},\bar{P} \right)=H+\frac{\partial S}{\partial t} \\
Zeile 28: Zeile 28:




<math>\bar{H}\left( \bar{Q},\bar{P} \right)=H\left( {{q}_{1}},...,{{q}_{f}},\frac{\partial S}{\partial {{q}_{1}}},...,\frac{\partial S}{\partial {{q}_{f}}},t \right)+\frac{\partial S}{\partial t}=0</math>
:<math>\bar{H}\left( \bar{Q},\bar{P} \right)=H\left( {{q}_{1}},...,{{q}_{f}},\frac{\partial S}{\partial {{q}_{1}}},...,\frac{\partial S}{\partial {{q}_{f}}},t \right)+\frac{\partial S}{\partial t}=0</math>




Zeile 36: Zeile 36:


Eine nichtlineare partielle Differenzialgleichung erster Ordnung für
Eine nichtlineare partielle Differenzialgleichung erster Ordnung für
<math>\begin{align}
:<math>\begin{align}
   & S(\bar{q},\bar{\alpha },t) \\
   & S(\bar{q},\bar{\alpha },t) \\
  & {{\alpha }_{k}}={{P}_{k}}=const. \\
  & {{\alpha }_{k}}={{P}_{k}}=const. \\
Zeile 43: Zeile 43:


Also haben wir nur Abhängigkeit von f+1 Variablen:
Also haben wir nur Abhängigkeit von f+1 Variablen:
<math>\bar{q},t</math>
:<math>\bar{q},t</math>




Zeile 49: Zeile 49:




<math>\begin{align}
:<math>\begin{align}
   & {{{\dot{P}}}_{k}}=-\frac{\partial H}{\partial {{Q}_{k}}}\equiv 0\Rightarrow {{P}_{k}}={{\alpha }_{k}}=cons \\
   & {{{\dot{P}}}_{k}}=-\frac{\partial H}{\partial {{Q}_{k}}}\equiv 0\Rightarrow {{P}_{k}}={{\alpha }_{k}}=cons \\
  & {{{\dot{Q}}}_{k}}=\frac{\partial \bar{H}}{\partial {{P}_{k}}}\equiv 0\Rightarrow {{Q}_{k}}={{\beta }_{k}}=const \\
  & {{{\dot{Q}}}_{k}}=\frac{\partial \bar{H}}{\partial {{P}_{k}}}\equiv 0\Rightarrow {{Q}_{k}}={{\beta }_{k}}=const \\
Zeile 58: Zeile 58:


#
#
<math>\begin{align}
:<math>\begin{align}
   & H(\bar{q},\bar{p},t) \\
   & H(\bar{q},\bar{p},t) \\
  & {{p}_{k}}=\frac{\partial S}{\partial {{q}_{k}}} \\
  & {{p}_{k}}=\frac{\partial S}{\partial {{q}_{k}}} \\
Zeile 65: Zeile 65:


# Lösung der Ham- Jacobi-DGL:
# Lösung der Ham- Jacobi-DGL:
<math>\begin{align}
:<math>\begin{align}
   & S(\bar{q},\bar{\alpha },t) \\
   & S(\bar{q},\bar{\alpha },t) \\
  & {{\alpha }_{k}}={{P}_{k}}=const. \\
  & {{\alpha }_{k}}={{P}_{k}}=const. \\
Zeile 71: Zeile 71:


# Aus der Erzeugenden
# Aus der Erzeugenden
<math>S(\bar{q},\bar{\alpha },t)</math>
:<math>S(\bar{q},\bar{\alpha },t)</math>
folgt:
folgt:




<math>{{Q}_{k}}=\frac{\partial S(\bar{q},\bar{\alpha },t)}{\partial {{\alpha }_{k}}}={{\beta }_{k}}</math>
:<math>{{Q}_{k}}=\frac{\partial S(\bar{q},\bar{\alpha },t)}{\partial {{\alpha }_{k}}}={{\beta }_{k}}</math>




Zeile 81: Zeile 81:




<math>{{q}_{j}}={{q}_{j}}(\bar{\alpha },\bar{\beta },t)</math>
:<math>{{q}_{j}}={{q}_{j}}(\bar{\alpha },\bar{\beta },t)</math>




Zeile 87: Zeile 87:




<math>\det \frac{{{\partial }^{2}}S(\bar{q},\bar{\alpha },t)}{\partial {{\alpha }_{k}}\partial {{q}_{l}}}\ne 0</math>
:<math>\det \frac{{{\partial }^{2}}S(\bar{q},\bar{\alpha },t)}{\partial {{\alpha }_{k}}\partial {{q}_{l}}}\ne 0</math>




Zeile 93: Zeile 93:


4.
4.
<math>{{p}_{j}}=\frac{\partial S}{\partial {{q}_{j}}}={{p}_{j}}\left( \bar{q},\bar{\alpha },t \right)={{p}_{j}}\left( \bar{q}(\bar{\alpha },\bar{\beta }),\bar{\alpha },t \right)</math>
:<math>{{p}_{j}}=\frac{\partial S}{\partial {{q}_{j}}}={{p}_{j}}\left( \bar{q},\bar{\alpha },t \right)={{p}_{j}}\left( \bar{q}(\bar{\alpha },\bar{\beta }),\bar{\alpha },t \right)</math>




5. Bestimmung von
5. Bestimmung von
<math>\bar{\alpha },\bar{\beta }</math>
:<math>\bar{\alpha },\bar{\beta }</math>
aus den Anfangsbedingungen:
aus den Anfangsbedingungen:


In drei (3.):
In drei (3.):
<math>{{q}_{j}}(0)={{q}_{j}}(\bar{\alpha },\bar{\beta },0)</math>
:<math>{{q}_{j}}(0)={{q}_{j}}(\bar{\alpha },\bar{\beta },0)</math>




In vier ( 4.):
In vier ( 4.):
<math>{{p}_{j}}(0)={{p}_{j}}\left( \bar{\alpha },\bar{\beta },0 \right)</math>
:<math>{{p}_{j}}(0)={{p}_{j}}\left( \bar{\alpha },\bar{\beta },0 \right)</math>






<math>\begin{align}
:<math>\begin{align}
   & \Rightarrow \bar{\alpha }(\bar{q}(0),\bar{p}(0)) \\
   & \Rightarrow \bar{\alpha }(\bar{q}(0),\bar{p}(0)) \\
  & \bar{\beta }(\bar{q}(0),\bar{p}(0)) \\
  & \bar{\beta }(\bar{q}(0),\bar{p}(0)) \\
Zeile 116: Zeile 116:


Nach Gleichungen 3) und 4) ist damit
Nach Gleichungen 3) und 4) ist damit
<math>{{q}_{j}}(t)</math> und <math>{{p}_{j}}(t)</math>
:<math>{{q}_{j}}(t)</math> und <math>{{p}_{j}}(t)</math>
bestimmt
bestimmt


Zeile 122: Zeile 122:




<math>\begin{align}
:<math>\begin{align}
   & \frac{dS}{dt}=\sum\limits_{j}{{}}\frac{\partial S}{\partial {{q}_{j}}}{{{\dot{q}}}_{j}}+\frac{\partial S}{\partial t}=\sum\limits_{j}{{}}{{p}_{j}}{{{\dot{q}}}_{j}}+\frac{\partial S}{\partial t} \\
   & \frac{dS}{dt}=\sum\limits_{j}{{}}\frac{\partial S}{\partial {{q}_{j}}}{{{\dot{q}}}_{j}}+\frac{\partial S}{\partial t}=\sum\limits_{j}{{}}{{p}_{j}}{{{\dot{q}}}_{j}}+\frac{\partial S}{\partial t} \\
  & \frac{\partial S}{\partial t}=\bar{H}-H=-H \\
  & \frac{\partial S}{\partial t}=\bar{H}-H=-H \\
Zeile 135: Zeile 135:


1.
1.
<math>\begin{align}
:<math>\begin{align}
   & H=\frac{{{p}^{2}}}{2m}+\frac{m}{2}{{\omega }^{2}}{{q}^{2}} \\
   & H=\frac{{{p}^{2}}}{2m}+\frac{m}{2}{{\omega }^{2}}{{q}^{2}} \\
  & S(q,P,t) \\
  & S(q,P,t) \\
Zeile 142: Zeile 142:


H als Hamiltonfunktion und S als Erzeugende der kanonischen Trafo mit
H als Hamiltonfunktion und S als Erzeugende der kanonischen Trafo mit
<math>\frac{\partial S(q,P,t)}{\partial q}=p</math>
:<math>\frac{\partial S(q,P,t)}{\partial q}=p</math>




Zeile 148: Zeile 148:




<math>\frac{1}{2m}\left( \frac{\partial S(q,P,t)}{\partial q} \right)+\frac{m}{2}{{\omega }^{2}}{{q}^{2}}+\frac{\partial S}{\partial t}=0</math>
:<math>\frac{1}{2m}\left( \frac{\partial S(q,P,t)}{\partial q} \right)+\frac{m}{2}{{\omega }^{2}}{{q}^{2}}+\frac{\partial S}{\partial t}=0</math>




Zeile 154: Zeile 154:




<math>S(q,P,t)=W(q;P)+V(t;P)</math>
:<math>S(q,P,t)=W(q;P)+V(t;P)</math>




Zeile 160: Zeile 160:




<math>\frac{1}{2m}{{\left( \frac{dW}{dq} \right)}^{2}}+\frac{m}{2}{{\omega }^{2}}{{q}^{2}}=-\frac{dV}{dt}</math>
:<math>\frac{1}{2m}{{\left( \frac{dW}{dq} \right)}^{2}}+\frac{m}{2}{{\omega }^{2}}{{q}^{2}}=-\frac{dV}{dt}</math>




Zeile 166: Zeile 166:




<math>\frac{1}{2m}{{\left( \frac{dW}{dq} \right)}^{2}}+\frac{m}{2}{{\omega }^{2}}{{q}^{2}}=-\frac{dV}{dt}=\alpha \equiv const</math>
:<math>\frac{1}{2m}{{\left( \frac{dW}{dq} \right)}^{2}}+\frac{m}{2}{{\omega }^{2}}{{q}^{2}}=-\frac{dV}{dt}=\alpha \equiv const</math>






<math>V(t)=-\alpha t+{{V}_{0}}</math>
:<math>V(t)=-\alpha t+{{V}_{0}}</math>




Zeile 176: Zeile 176:




<math>\begin{align}
:<math>\begin{align}
   & {{\left( \frac{dW}{dq} \right)}^{2}}={{m}^{2}}{{\omega }^{2}}\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right) \\
   & {{\left( \frac{dW}{dq} \right)}^{2}}={{m}^{2}}{{\omega }^{2}}\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right) \\
  & W=m\omega \int{dq}\sqrt{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)} \\
  & W=m\omega \int{dq}\sqrt{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)} \\
Zeile 185: Zeile 185:




<math>S(q,\alpha ,t)=m\omega \int{dq}\sqrt{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}-\alpha t+{{V}_{0}}</math>
:<math>S(q,\alpha ,t)=m\omega \int{dq}\sqrt{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}-\alpha t+{{V}_{0}}</math>




Zeile 191: Zeile 191:




<math>S(q,\alpha ,t)=m\omega \int{dq}\sqrt{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}-\alpha t=-\alpha t+m\omega \left[ \frac{q}{2}\sqrt{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}+\frac{\alpha }{m{{\omega }^{2}}}\arcsin \left( q\sqrt{\frac{m{{\omega }^{2}}}{2\left| \alpha  \right|}} \right) \right]</math>
:<math>S(q,\alpha ,t)=m\omega \int{dq}\sqrt{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}-\alpha t=-\alpha t+m\omega \left[ \frac{q}{2}\sqrt{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}+\frac{\alpha }{m{{\omega }^{2}}}\arcsin \left( q\sqrt{\frac{m{{\omega }^{2}}}{2\left| \alpha  \right|}} \right) \right]</math>
3.
3.
<math>\begin{align}
:<math>\begin{align}
   & Q=\left( \frac{\partial S(q,P,t)}{\partial \alpha } \right)=-t+\frac{1}{\omega }\int{dq}{{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}^{-\frac{1}{2}}}=\beta  \\
   & Q=\left( \frac{\partial S(q,P,t)}{\partial \alpha } \right)=-t+\frac{1}{\omega }\int{dq}{{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}^{-\frac{1}{2}}}=\beta  \\
  & Q=\beta =-t+\frac{1}{\omega }\arcsin \left( q\sqrt{\frac{m{{\omega }^{2}}}{2\left| \alpha  \right|}} \right) \\
  & Q=\beta =-t+\frac{1}{\omega }\arcsin \left( q\sqrt{\frac{m{{\omega }^{2}}}{2\left| \alpha  \right|}} \right) \\
Zeile 203: Zeile 203:


4.
4.
<math>p=\left( \frac{\partial S(q,P,t)}{\partial q} \right)=\frac{dW}{dq}=m\omega \sqrt{\frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}}}=\sqrt{2\alpha m}\cos \left( \omega (t+\beta ) \right)</math>
:<math>p=\left( \frac{\partial S(q,P,t)}{\partial q} \right)=\frac{dW}{dq}=m\omega \sqrt{\frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}}}=\sqrt{2\alpha m}\cos \left( \omega (t+\beta ) \right)</math>




Zeile 209: Zeile 209:




<math>p(0)=0,q(0)={{q}_{0}}\ne 0</math>
:<math>p(0)=0,q(0)={{q}_{0}}\ne 0</math>






<math>\begin{align}
:<math>\begin{align}
   & \Rightarrow {{q}_{0}}=\frac{1}{\omega }\sqrt{\frac{2\alpha }{m}}\sin \left( \omega (\beta ) \right) \\
   & \Rightarrow {{q}_{0}}=\frac{1}{\omega }\sqrt{\frac{2\alpha }{m}}\sin \left( \omega (\beta ) \right) \\
  & 0={{p}_{0}}=\sqrt{2\alpha m}\cos \left( \omega (\beta ) \right) \\
  & 0={{p}_{0}}=\sqrt{2\alpha m}\cos \left( \omega (\beta ) \right) \\
Zeile 224: Zeile 224:


Also:  P=E  ( Energie)  , Q= to ( Zeit) -> Energie und Zeit als neue verallgemeinerte Koordinaten bei der Transformation, die durch
Also:  P=E  ( Energie)  , Q= to ( Zeit) -> Energie und Zeit als neue verallgemeinerte Koordinaten bei der Transformation, die durch
<math>S(q,P,t)</math>
:<math>S(q,P,t)</math>
erzeugt wird.
erzeugt wird.


Zeile 232: Zeile 232:




<math>\frac{\partial H}{\partial t}=0\Leftrightarrow \frac{dH}{dt}=\left\{ H,H \right\}=0</math>
:<math>\frac{\partial H}{\partial t}=0\Leftrightarrow \frac{dH}{dt}=\left\{ H,H \right\}=0</math>
H ist dann Integral der Bewegung
H ist dann Integral der Bewegung


Zeile 238: Zeile 238:




<math>H(\bar{q},\frac{\partial S}{\partial {{q}_{1}}},...,\frac{\partial S}{\partial {{q}_{f}}})+\frac{\partial S}{\partial t}=0</math>
:<math>H(\bar{q},\frac{\partial S}{\partial {{q}_{1}}},...,\frac{\partial S}{\partial {{q}_{f}}})+\frac{\partial S}{\partial t}=0</math>




Zeile 244: Zeile 244:




<math>S(\bar{q},\bar{P},t)=W(\bar{q};\bar{P})-Et</math>
:<math>S(\bar{q},\bar{P},t)=W(\bar{q};\bar{P})-Et</math>




Zeile 250: Zeile 250:




<math>H(\bar{q},\frac{\partial W}{\partial {{q}_{1}}},...,\frac{\partial W}{\partial {{q}_{f}}})=E</math>
:<math>H(\bar{q},\frac{\partial W}{\partial {{q}_{1}}},...,\frac{\partial W}{\partial {{q}_{f}}})=E</math>
Energie bei skleronomen Zwangsbedingungen
Energie bei skleronomen Zwangsbedingungen




<math>W(\bar{q};\bar{P})</math>
:<math>W(\bar{q};\bar{P})</math>
heißt verkürztes Wirkungsfunktional
heißt verkürztes Wirkungsfunktional


Zeile 260: Zeile 260:




<math>\begin{align}
:<math>\begin{align}
   & {{p}_{j}}=\frac{\partial W}{\partial {{q}_{j}}} \\
   & {{p}_{j}}=\frac{\partial W}{\partial {{q}_{j}}} \\
  & {{Q}_{j}}=\frac{\partial W}{\partial {{P}_{j}}} \\
  & {{Q}_{j}}=\frac{\partial W}{\partial {{P}_{j}}} \\
Zeile 271: Zeile 271:


* Betrachten wir 1 Teilchen im Potenzial
* Betrachten wir 1 Teilchen im Potenzial
<math>V(\bar{q}),\bar{q}\in {{R}^{3}}</math>
:<math>V(\bar{q}),\bar{q}\in {{R}^{3}}</math>
, gilt auch für
, gilt auch für
<math>V(\bar{q}),\bar{q}\in {{R}^{f}}</math>
:<math>V(\bar{q}),\bar{q}\in {{R}^{f}}</math>


*
*
<math>W(\bar{q})=const</math>
:<math>W(\bar{q})=const</math>
sind dann Flächen im R³:
sind dann Flächen im R³:


Dabei sind
Dabei sind
<math>S(\bar{q},t)=W(\bar{q})-Et</math>
:<math>S(\bar{q},t)=W(\bar{q})-Et</math>
Wirkunsgwellen mit einer Phasengeschwindigkeit
Wirkunsgwellen mit einer Phasengeschwindigkeit




<math>\bar{u}\approx \nabla W(\bar{q})</math> mit <math>\bar{u}\bot W(\bar{q})=const</math>
:<math>\bar{u}\approx \nabla W(\bar{q})</math> mit <math>\bar{u}\bot W(\bar{q})=const</math>




Zeile 290: Zeile 290:




<math>\bar{p}=\nabla W(\bar{q})</math>
:<math>\bar{p}=\nabla W(\bar{q})</math>
  Damit haben wir jedoch eine Betrachtung der " Wirkungswellen" entgegen einer Darstellung als Teilchen mit Impuls p ( Welle- Teilchen- Dualismus).
  Damit haben wir jedoch eine Betrachtung der " Wirkungswellen" entgegen einer Darstellung als Teilchen mit Impuls p ( Welle- Teilchen- Dualismus).


Zeile 296: Zeile 296:




<math>H(\bar{q},\nabla W)=\frac{1}{2m}{{\left( \nabla W(\bar{q}) \right)}^{2}}+V(\bar{q})=E</math>
:<math>H(\bar{q},\nabla W)=\frac{1}{2m}{{\left( \nabla W(\bar{q}) \right)}^{2}}+V(\bar{q})=E</math>




Zeile 304: Zeile 304:




<math>\left( \frac{-{{\hbar }^{2}}}{2m}\Delta +V(\bar{r}) \right)\Psi (\bar{r})=E\Psi (\bar{r})</math>
:<math>\left( \frac{-{{\hbar }^{2}}}{2m}\Delta +V(\bar{r}) \right)\Psi (\bar{r})=E\Psi (\bar{r})</math>




links mit H = hamiltonoperator in Ortsdarstellung.
links mit H = hamiltonoperator in Ortsdarstellung.
<math>\Psi (\bar{r})={{e}^{\frac{i}{\hbar }W(\bar{r})}}</math>
:<math>\Psi (\bar{r})={{e}^{\frac{i}{\hbar }W(\bar{r})}}</math>
als Wellenfunktion
als Wellenfunktion


Zeile 314: Zeile 314:




<math>\begin{align}
:<math>\begin{align}
   & \bar{q}\to \bar{r} \\
   & \bar{q}\to \bar{r} \\
  & \bar{p}\to \frac{\hbar }{i}\nabla  \\
  & \bar{p}\to \frac{\hbar }{i}\nabla  \\
Zeile 323: Zeile 323:




<math>\Delta {{e}^{\frac{i}{\hbar }W(\bar{r})}}=\nabla \frac{i}{\hbar }\left( \nabla W{{e}^{\frac{i}{\hbar }W(\bar{r})}} \right)\cong -\frac{1}{{{\hbar }^{2}}}{{\left( \nabla W \right)}^{2}}{{e}^{\frac{i}{\hbar }W(\bar{r})}}</math>
:<math>\Delta {{e}^{\frac{i}{\hbar }W(\bar{r})}}=\nabla \frac{i}{\hbar }\left( \nabla W{{e}^{\frac{i}{\hbar }W(\bar{r})}} \right)\cong -\frac{1}{{{\hbar }^{2}}}{{\left( \nabla W \right)}^{2}}{{e}^{\frac{i}{\hbar }W(\bar{r})}}</math>





Version vom 12. September 2010, 17:26 Uhr




Der einfachste Fall, bei dem alle Koordinaten zyklisch sind:



Allgemeiner wähle man speziell als Erzeugende der kanonischen Trafo:



dann suchen wir die folgende Trafo:


mit


So dass:



Dies ist eine Differenzialgleichung zur Bestimmung von S und der Koordinaten P und Q, die so genannte

Hamilton- Jacobi- Differenzialgleichung.

Eine nichtlineare partielle Differenzialgleichung erster Ordnung für


Also haben wir nur Abhängigkeit von f+1 Variablen:


Die kanonischen Gleichungen lauten:



Lösungsschema für die Hamilton- Jacobi DGL:

  1. Lösung der Ham- Jacobi-DGL:
  1. Aus der Erzeugenden

folgt:



mit der implizierten Umkehrung:



möglich wegen



Somit ergeben sich f Gleichungen für q1,...qf

4.


5. Bestimmung von

aus den Anfangsbedingungen:

In drei (3.):


In vier ( 4.):



Nach Gleichungen 3) und 4) ist damit

und

bestimmt

Physikalische Bedeutung von S:


S kann somit als Wirkungsfunktional interpretiert werden.

Beispiel: 1 dim Oszi

1.


H als Hamiltonfunktion und S als Erzeugende der kanonischen Trafo mit


Hamilton- Jacobi DGL:



2. Lösungsansatz:



Dies ist als Separationsansatz nach q und t zu interpretieren. P ist ein Parameter



Dabei ist die linke Seite unabhängig von t und die rechte unabhängig von q. Die Lösung kann also nur dann für alle t und q übereinstimmen, wenn:




Es folgt:



Also:



Da Potenziale um skalare Faktoren verschoben werden können:


3.


Mit der Nebenbedingung, dass Q=to ( Dimension: Zeit) !

4.


5. Anfangsbedingungen: t=0: p(0)=0, q(0)=q0 ungleich 0 !




Alpha beschreibt also die Gesamtenergie. Physikalisch sinnvoll, da zu dieser Zeit nur potenzielle Energie vorhanden ist.

Also: P=E ( Energie) , Q= to ( Zeit) -> Energie und Zeit als neue verallgemeinerte Koordinaten bei der Transformation, die durch

erzeugt wird.

Spezialfall:

Nicht explizit zeitabhängige Hamiltonfunktion H


H ist dann Integral der Bewegung

Hamilton- Jacobi DGL:



Lösungsansatz:



Somit folgt:


Energie bei skleronomen Zwangsbedingungen


heißt verkürztes Wirkungsfunktional

Dieses kann auch als Erzeugende einer kanonischen Trafo ( im engeren Sinn) aufgefasst werden:



Bezug zur Quantenmechanik

  • Betrachten wir 1 Teilchen im Potenzial

, gilt auch für

sind dann Flächen im R³:

Dabei sind

Wirkunsgwellen mit einer Phasengeschwindigkeit


mit


Der Teilchenimpuls eines fliegenden Teilchens dagegen berechnet such ebenfalls als Gradient der Erzeugenden:


Damit haben wir jedoch eine Betrachtung der " Wirkungswellen" entgegen einer Darstellung als Teilchen mit Impuls p ( Welle- Teilchen- Dualismus).

In jedem Fall erhält man als Hamilton- Jacobi- DiffGl:



Der Übergang zur Quantenmehcanik ist analog dem Übergang von der geometrischen Optik zur Wellenoptik ( Wellenoptik als geometrische Optik für große Wellenlängen) und geometrische optik als Wellenoptik für kleine Weglängen ( gut Übergangsresultate). Die typische optisch- mechanische Analogie

Wir erhalten in der quantenmechanischen Analogie als Wellenformalismus dagegen die Schödingergleichung:



links mit H = hamiltonoperator in Ortsdarstellung.

als Wellenfunktion

Unsere Koordinatentrafo lautet:



Auch hier sieht man die Analogie bei kleinen Wellenlängen, wenn folgende Näherung erlaubt ist:



Veranschaulichung der Zusammenhänge:

Aus der klassischen Mechanik gelangen wir durch Übergang von Poissonklammernauf Kommutatoren zur Heisenbergschen Matrizenmechanik, die sich zur Quantenmechanik transformieren läßt.

führt man in der klassischen Mechanik dagegen die Hamilton- Jacobi- Theorie ein ( optisch- mechanisches Analogon), so gelangt man leicht zur Wellenmechanik ( Schrödinger) und kann sich auf diesem Weg ebenso der Quantenmechanik nähern.