Hamiltonsches Prinzip: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Zeile 20: Zeile 20:


<math>\begin{align}
<math>\begin{align}
   \delta S\left[ q \right]=S\left[ {{q}_{0}} \right]-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{L\left( q+\delta q,\dot{q}+\delta \dot{q},t \right)dt} \\  
   \delta S\left[ q \right] & =S\left[ {{q}_{0}} \right]-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{L\left( q+\delta q,\dot{q}+\delta \dot{q},t \right)dt} \\  
  & =S\left[ {{q}_{0}} \right]-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( \underbrace{L}_{=S\left[ {{q}_{0}} \right]}+{{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt} \\  
  & =S\left[ {{q}_{0}} \right]-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( \underbrace{L}_{=S\left[ {{q}_{0}} \right]}+{{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt} \\  
  & =-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt}   
  & =-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt}   
Zeile 27: Zeile 27:


<math>\begin{align}
<math>\begin{align}
   \delta S\left[ q \right]=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\delta L\left( q,\dot{q},t \right)dt} \\  
   \delta S\left[ q \right] & =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\delta L\left( q,\dot{q},t \right)dt} \\  
  & =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt}   
  & =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt}   
\end{align}</math>
\end{align}</math>
mit partieller Integration
<math>{{\partial }_{{\dot{q}}}}L\delta \dot{q}={{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L\delta q \right)-{{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L \right)\delta q</math>


[[FragenID::M1]]
[[FragenID::M1]]


[[Kategorie:Mechanik]]
[[Kategorie:Mechanik]]

Version vom 19. Juli 2009, 00:49 Uhr

auch Prinzip der kleinsten Wirkung genannt

  • Variation der ganzen Bahn im Konfigurationsraum <> Gegensatz d'Ambertsches Prinzip
  • Wirkung (S) wird extrenmal (minimal)
  • Start und Zielpunkt sind fest vorgegeben (hier keine Variation)
  • Zeit wird nicht mitvarieiert
  • Vergleich ART Teilchen Bewegt sich auf Geodäten <> aber nicht im Ereignisraum
  • (2 fach stetig diffb. Funktionen)
  • unabhängig von Koordinatenwahl
  • Allgemein

mit 

spezielle Form

  • holonome Zwangsbedingungen --> generalisierte Koordinaten
  • konservative Kräfte -->

führt zur Wirkung

Herleitung der Euler-Lagrange-Gleichungen

oder

mit partieller Integration


M1