Helizität und Spin: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „<noinclude>{{ScriptProf|Kapitel=1|Abschnitt=8|Prof=Brandes|Thema=Quantenmechanik|Schreiber=Moritz Schubotz}}</noinclude> Erinnerung <math>\underline{\sigma }=\un…“
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
<noinclude>{{ScriptProf|Kapitel=1|Abschnitt=8|Prof=Brandes|Thema=Quantenmechanik|Schreiber=Moritz Schubotz}}</noinclude>
<noinclude>{{ScriptProf|Kapitel=1|Abschnitt=8|Prof=Brandes|Thema=Quantenmechanik|Schreiber=Moritz Schubotz}}</noinclude>
Erinnerung
Erinnerung <math>\underline{\sigma }=\underbrace{\left( {{{\underline{\underline{\sigma }}}}_{1}},{{{\underline{\underline{\sigma }}}}_{2}},{{{\underline{\underline{\sigma }}}}_{3}} \right)}_{\text{Vektor der Pauli-Matrizen}},</math> Produkte <math>\underline{k}\underline{\sigma }</math>in Dirac Spinoren <math>{{\phi }_{\pm }}^{\left( i \right)}</math> (1.72).


<math>\underline{\sigma }=\underbrace{\left( {{{\underline{\underline{\sigma }}}}_{1}},{{{\underline{\underline{\sigma }}}}_{2}},{{{\underline{\underline{\sigma }}}}_{3}} \right)}_{\text{Vektor der Pauli-Matrizen}}</math>
, Produkte <math>\underline{k}\underline{\sigma }</math>in Dirac Spinoren <math>{{\phi }_{\pm }}^{\left( i \right)}</math>(1.72).
Definiere


Definiere:
{{NumBlk|:|
{{NumBlk|:|


<math>\hat{k}:=\frac{{\underline{k}}}{\left| {\underline{k}} \right|}=\left( \sin \theta \cos \varphi ,\sin \theta \sin \varphi ,\cos \theta  \right)</math>
<math>\hat{k}:=\frac{{\underline{k}}}{\left| {\underline{k}} \right|}=\left( \sin \theta \cos \varphi ,\sin \theta \sin \varphi ,\cos \theta  \right)</math>
: |(1.73)|RawN=.}}
|(1.73)|RawN=.}}
als Einheitsvektor in <math>\underline{k}</math>-Richtung in Polarkoordinaten bezüglich der z-Achse.
als Einheitsvektor in <math>\underline{k}</math>-Richtung in Polarkoordinaten bezüglich der z-Achse.
Dann gilt
Dann gilt
Zeile 22: Zeile 18:
Eigenvektoren <math>\left| \uparrow ,\hat{k} \right\rangle ,\left| \downarrow ,\hat{k} \right\rangle </math>von <math>\underline{k}\underline{\sigma }</math> bestimmen!
Eigenvektoren <math>\left| \uparrow ,\hat{k} \right\rangle ,\left| \downarrow ,\hat{k} \right\rangle </math>von <math>\underline{k}\underline{\sigma }</math> bestimmen!
Die Eigenwerte sind <math>\pm 1</math>.
Die Eigenwerte sind <math>\pm 1</math>.
Die Spinoren (1.72) als Eigenvektoren des Helizitätsoperators{{FB|Helizitätsoperator}} (4x4 Matrix)
Die Spinoren (1.72) als Eigenvektoren des {{FB|Helizitätsoperator}}s (4x4 Matrix)
{{NumBlk|:|
{{NumBlk|:|
<math>\hat{k}\Sigma =\left( \begin{matrix}
<math>\hat{k}\Sigma =\left( \begin{matrix}
Zeile 29: Zeile 25:
\end{matrix} \right)</math>
\end{matrix} \right)</math>
: |(1.75)|RawN=.}}
: |(1.75)|RawN=.}}
wählen: Hierzu (1.72)<math>{{\underline{u}}^{\left( 1 \right)}}:=\left| \uparrow ,\hat{k} \right\rangle ,{{\underline{u}}^{\left( 2 \right)}}:=\left| \downarrow ,\hat{k} \right\rangle </math> damit haben wir die Basis
wählen: Hierzu (1.72) <math>{{\underline{u}}^{\left( 1 \right)}}:=\left| \uparrow ,\hat{k} \right\rangle ,{{\underline{u}}^{\left( 2 \right)}}:=\left| \downarrow ,\hat{k} \right\rangle </math> damit haben wir die Basis
{{NumBlk|:|
{{NumBlk|:|
<math>{{\phi }_{+}}^{\left( \sigma  \right)}\left( {\underline{k}} \right):=N\left( \begin{align}
<math>{{\phi }_{+}}^{\left( \sigma  \right)}\left( {\underline{k}} \right):=N\left( \begin{align}
Zeile 42: Zeile 38:
& \sigma =\uparrow \quad \text{negative Helizit }\!\!\ddot{\mathrm{a}}\!\!\text{ }t \\
& \sigma =\uparrow \quad \text{negative Helizit }\!\!\ddot{\mathrm{a}}\!\!\text{ }t \\
& \sigma =\downarrow \quad \text{negative Helizit }\!\!\ddot{\mathrm{a}}\!\!\text{ }t \\
& \sigma =\downarrow \quad \text{negative Helizit }\!\!\ddot{\mathrm{a}}\!\!\text{ }t \\
\end{align}</math>
\end{align}.</math>
* Der Hamiltonoperator{{FB|Hamiltonoperator}} des freien Dirac-Teilchens, <math>\hat{H}=\underline{a}\underline{\hat{p}}+\beta m</math>(1.31), kommutiert mit dem Helizitätsoperator <math>\hat{k}\Sigma </math>(1.75), <font color="#FFFF00">'''''(AUFGABE)''''' </font>aber nicht mit dem Spin-Operator{{FB|Spin-Operator}}<math>\Sigma =\left( \begin{matrix}
* Der Hamiltonoperator{{FB|Hamiltonoperator}} des freien Dirac-Teilchens, <math>\hat{H}=\underline{a}\underline{\hat{p}}+\beta m</math>(1.31), kommutiert mit dem Helizitätsoperator <math>\hat{k}\Sigma </math>(1.75), <font color="#3399FF">'''''(AUFGABE)''''' </font>aber nicht mit dem {{FB|Spin-Operator}} <math>\Sigma =\left( \begin{matrix}
*    {\underline{\sigma }} & 0  \\
    {\underline{\sigma }} & 0  \\
*    0 & {\underline{\sigma }}  \\
    0 & {\underline{\sigma }}  \\
* \end{matrix} \right)</math>. Deshalb kann man die Lösungen der freien Dirac-Gleichungen als Eigenvektoren von <math>\hat{k}\Sigma </math> zählen.
\end{matrix} \right)</math>. Deshalb kann man die Lösungen der freien Dirac-Gleichungen als Eigenvektoren von <math>\hat{k}\Sigma </math> zählen.

Version vom 5. September 2010, 01:22 Uhr


Erinnerung Produkte in Dirac Spinoren (1.72).


Definiere:

     (1.73)

als Einheitsvektor in -Richtung in Polarkoordinaten bezüglich der z-Achse. Dann gilt

     (1.74)

Eigenvektoren von bestimmen! Die Eigenwerte sind . Die Spinoren (1.72) als Eigenvektoren des Helizitätsoperators (4x4 Matrix)

     (1.75)

wählen: Hierzu (1.72) damit haben wir die Basis

     (1.76)

mit

  • Der HamiltonoperatorHamiltonoperator des freien Dirac-Teilchens, (1.31), kommutiert mit dem Helizitätsoperator (1.75), (AUFGABE) aber nicht mit dem Spin-Operator . Deshalb kann man die Lösungen der freien Dirac-Gleichungen als Eigenvektoren von zählen.