Kurzer historischer Überblick: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „(Rückwärtsüberblick über die Vorlesung) ==A Avangado (1776-1856)== hat als einer der erste so etwas we die idealea Gasgleichung aufgeschrieben <math>pV=nkT</…“
 
*>SchuBot
K Pfeile einfügen, replaced: --> → → (2)
 
(10 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
(Rückwärtsüberblick über die Vorlesung)
(Rückwärtsüberblick über die Vorlesung)
 
<noinclude>{{ScriptKnorr|Thermodynamik|1|2}}</noinclude>
==A Avangado (1776-1856)==
==A Avangado (1776-1856)==
hat als einer der erste so etwas we die idealea Gasgleichung aufgeschrieben <math>pV=nkT</math>
hat als einer der erste so etwas we die idealea Gasgleichung aufgeschrieben <math>pV=nkT</math>
Zeile 7: Zeile 7:
==J.C. Maywell (1831-1879)==
==J.C. Maywell (1831-1879)==
berechnet erstmalig die Geschwidgkeitsverteilung des Teilchen in ein em idealn Gas
berechnet erstmalig die Geschwidgkeitsverteilung des Teilchen in ein em idealn Gas
:<math>\underbrace{w\left( v \right)}_{\begin{align}
  & \text{Wahrscheinlichkeit beim } \\
& \text{Reingreifen in ein} \\
& \text{Gas ein Teilchen mit} \\
& \left| \underline{v} \right|\text{=}v\text{ zu finden } \\
\end{align}}=4\pi {{\left( \frac{m}{2\pi {{k}_{B}}T} \right)}^{3/2}}{{v}^{2}}\underbrace{\exp \left( -\frac{m{{v}^{2}}}{2{{k}_{B}}T} \right)}_{\begin{smallmatrix}
\text{legt einen Abschneideparameter} \\
\text{kT}\triangleq \text{thermischen Energie fest}
\end{smallmatrix}}</math>
siehe auch [http://de.wikipedia.org/wiki/Maxwell-Boltzmann-Verteilung]
==J.W. Gibbs (1839-1903) u.a.==
führen unabhängig von Gas Wahscheinlichkeitsverteilungen recht allgemein ein.
:<math>\left\{ \left| {{\Psi }_{i}} \right\rangle  \right\}</math> Systemezustände mit Energie \epsilon_i treten mit Wahrscheinlichkeit
:<math>{{w}_{i}}\tilde{\ }\exp \left( -\frac{{{\varepsilon }_{i}}}{kT} \right)</math> auf.
==L. Bolzmann (1844-1906) u.a.==
verbinden die {{FB|Entropie}} S mit den w_i 's undn führen die Temperaturdefinition über S ein:
:<math>S=S\left( N,E,V \right)=-{{k}_{\text{B}}}\sum\limits_{i}{{{p}_{i}}}\ln {{w}_{i}}\rightleftharpoons {{T}^{-1}}={{\partial }_{E}}S</math> (E=Energie)
man verbindet die mikroskopiscen Größen <math>\epsilon_i</math> mit T, einer makroskopischen Größe.
(siehe auch [http://de.wikipedia.org/wiki/Entropie_(Thermodynamik)#Statistische_Physik])
==Quantenstatistik==
neben der klassischen Statistik von Maxwell gibt es die Quantenstatistik
* E. Fermi (1901-1954) → Fermionen (halbzahliger Spin)
* N. Bose (1894-1955) → Bose (ganzzahliger Spin)
Was ist die Wahrscheinlichkeit ein Teilchen im Zustand <math>\Psi_i</math> mit Energie <math>\epsilon_i</math> zu finden?
:<math>f_{{{\varepsilon }_{i}}}^{F/B}=\frac{1}{\exp \left( \beta \left( {{\varepsilon }_{i}}\pm 1 \right) \right)}</math>
mit
* <math>F+1 , B:-1</math>
* <math>\beta =\frac{1}{kT}</math> Abkürzung für inverse thermische Energie
* <math>\mu </math> Chemisches Potential
So wie Temeperatur Wäremeaustauisch zwischen System und Umgebung charakterisiert, so charakterisert
:<math>\mu </math>
den Teilchenaustausch.
Verfeinerungen jenseits <math>{{e}^{-{{\varepsilon }_{i}}\beta }}</math> sind Quanteneffekte.
{{Beispiel|
; klassisch : <math>pV=NkT\xrightarrow{T\to 0}0,p=0</math>
; qantenmechanisch : <math>pV\xrightarrow{T\to 0}\ne 0</math> Fermigas
}}
Druck von quantemechanischen Fermionen verschwindet bei T=0 nicht aufgrund von Unschärfe/Pauliprinzip "Fermidruck"
==Schwarzkörperstrahlung==
es gibt Bosonen ohne Masse \mu=0
z.B. Photonen sind masselose Bosonen M.Planck (1858-1947) leitet 1900 die spektrale Energiedichte eines Strahlers ab
:<math>u\left( \omega  \right)=\frac{16\pi \hbar }{{{c}^{2}}}\frac{\omega }{\exp \left( \frac{\hbar \omega }{kT} \right)-1}</math>
==P.Debey (1884-1966)==
wichtige Beiträge durch P.Debey [http://de.wikipedia.org/wiki/Peter_Debye] zur Materialphysik Theorie der Flüssigkeiten un der spezifischen Wärme von Festkörpern spezifisce Wäremkapazität
{{Beispiel|
; klassisch : <math>{{C}_{V}}\left( T \right)=3kN\quad \forall T</math>
; qantenmechanisch : <math>{{C}_{V}}\left( T\to 0 \right)=V\frac{2{{\pi }^{2}}}{5{{\left( \hbar {{c}_{s}} \right)}^{3}}}{{T}^{3}}</math>
}}
L.D. Landau [http://de.wikipedia.org/wiki/Lew_Dawidowitsch_Landau] (1908-1966) arbeitet auf dem Gebiet der Transporttheorie/ Ferromagnetismus
==Ratengleichung==
Beschreibung von Stößen zwischen Teilchen bisher nicht diskutiert, einfacher Ansatz sind {{FB|Ratengleichungen}}
:<math>{{{{\dot{f}}}}_{k}}=-\sum\limits_{l}{\underbrace{{{\Gamma }_{k\to l}}}_{\text{Ausstreurate}}{{f}_{k}}}+\sum\limits_{l}{\underbrace{{{\Gamma }_{l\to k}}}_{\text{Einstreurate}}{{f}_{l}}}</math>
Bezetzungszahl (wie viele Teilchen sind im Mittel im Zustand k) beschreibt die '''Dynamik''' aus einem Nichtgleichgewicht in ein Gleichgewichtszustand
==L. von Neumann (1903-1957)==
allgemeinster Zugang zur Statistik erfolgt über die von neumann Gleichung ds Statischen Operator <math>\rho</math>
:<math>i\hbar \dot{\rho }=\left[ H,\rho  \right]</math>
Dynamik eines Quantensystems in Umgebung ersetzt die Schrödingergleichung.
:<math>{\dot{\rho }}</math> ist der Wahrscheinlichkeitsoperator
((Vorlesung nimmt den Weg rückwärts))

Aktuelle Version vom 12. September 2010, 22:16 Uhr

(Rückwärtsüberblick über die Vorlesung)



A Avangado (1776-1856)

hat als einer der erste so etwas we die idealea Gasgleichung aufgeschrieben

J Losschmidt (1821-1879)

Anschätzung zur Zahl Moleküle in typischem makroskopischem Volumen von 1023 Teilchen

J.C. Maywell (1831-1879)

berechnet erstmalig die Geschwidgkeitsverteilung des Teilchen in ein em idealn Gas


siehe auch [1]

J.W. Gibbs (1839-1903) u.a.

führen unabhängig von Gas Wahscheinlichkeitsverteilungen recht allgemein ein.

Systemezustände mit Energie \epsilon_i treten mit Wahrscheinlichkeit
auf.

L. Bolzmann (1844-1906) u.a.

verbinden die Entropie S mit den w_i 's undn führen die Temperaturdefinition über S ein:

(E=Energie)

man verbindet die mikroskopiscen Größen mit T, einer makroskopischen Größe.

(siehe auch [2])

Quantenstatistik

neben der klassischen Statistik von Maxwell gibt es die Quantenstatistik

  • E. Fermi (1901-1954) → Fermionen (halbzahliger Spin)
  • N. Bose (1894-1955) → Bose (ganzzahliger Spin)

Was ist die Wahrscheinlichkeit ein Teilchen im Zustand mit Energie zu finden?

mit

  • Abkürzung für inverse thermische Energie
  • Chemisches Potential

So wie Temeperatur Wäremeaustauisch zwischen System und Umgebung charakterisiert, so charakterisert

den Teilchenaustausch.

Verfeinerungen jenseits sind Quanteneffekte.


klassisch
qantenmechanisch
Fermigas


Druck von quantemechanischen Fermionen verschwindet bei T=0 nicht aufgrund von Unschärfe/Pauliprinzip "Fermidruck"

Schwarzkörperstrahlung

es gibt Bosonen ohne Masse \mu=0 z.B. Photonen sind masselose Bosonen M.Planck (1858-1947) leitet 1900 die spektrale Energiedichte eines Strahlers ab

P.Debey (1884-1966)

wichtige Beiträge durch P.Debey [3] zur Materialphysik Theorie der Flüssigkeiten un der spezifischen Wärme von Festkörpern spezifisce Wäremkapazität


klassisch
qantenmechanisch

L.D. Landau [4] (1908-1966) arbeitet auf dem Gebiet der Transporttheorie/ Ferromagnetismus

Ratengleichung

Beschreibung von Stößen zwischen Teilchen bisher nicht diskutiert, einfacher Ansatz sind Ratengleichungen

Bezetzungszahl (wie viele Teilchen sind im Mittel im Zustand k) beschreibt die Dynamik aus einem Nichtgleichgewicht in ein Gleichgewichtszustand

L. von Neumann (1903-1957)

allgemeinster Zugang zur Statistik erfolgt über die von neumann Gleichung ds Statischen Operator

Dynamik eines Quantensystems in Umgebung ersetzt die Schrödingergleichung.


ist der Wahrscheinlichkeitsoperator

((Vorlesung nimmt den Weg rückwärts))