Lösungen der Dirac-Gleichung (freies Teilchen): Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 136: Zeile 136:
Lösung wie Matrixgleichung <math>\underline{\underline{M}}\underline{x}=0</math>möglich, einfacher Trick:
Lösung wie Matrixgleichung <math>\underline{\underline{M}}\underline{x}=0</math>möglich, einfacher Trick:


<math>\begin{align}
:<math>\begin{align}


& \left( {{\gamma }^{\mu }}{{k}_{\mu }}-m \right)\left( {{\gamma }^{\nu }}{{k}_{\nu }}+m \right)={{\gamma }^{\mu }}{{k}_{\mu }}{{\gamma }^{\nu }}{{k}_{\nu }}-{{m}^{2}}={{E}^{2}}-{{k}^{2}}-{{m}^{2}}=0,\quad  \\
& \left( {{\gamma }^{\mu }}{{k}_{\mu }}-m \right)\left( {{\gamma }^{\nu }}{{k}_{\nu }}+m \right)={{\gamma }^{\mu }}{{k}_{\mu }}{{\gamma }^{\nu }}{{k}_{\nu }}-{{m}^{2}}={{E}^{2}}-{{k}^{2}}-{{m}^{2}}=0,\quad  \\
Zeile 146: Zeile 146:
----
----


 
{{NumBlk|:|
<math>\left( {{\gamma }^{\mu }}{{k}_{\mu }}-m \right)\underbrace{\left( {{\gamma }^{\nu }}{{k}_{\nu }}+m \right)\left( \begin{align}
<math>\left( {{\gamma }^{\mu }}{{k}_{\mu }}-m \right)\underbrace{\left( {{\gamma }^{\nu }}{{k}_{\nu }}+m \right)\left( \begin{align}


Zeile 275: Zeile 275:


\end{align}</math>
\end{align}</math>
{{NumBlk|:||(1.71)|RawN=.}}
|(1.71)|RawN=.}}
Insgesamt existieren also 4 linear unabhängige Lösungen mit der Basis
Insgesamt existieren also 4 linear unabhängige Lösungen mit der Basis



Version vom 5. September 2010, 01:37 Uhr


Wir starten von

a) Separationsansatz

     (1.66)


Ansatz (Eigenwertgleichung)

(hat 2 Eigenwerte)

     (1.67)


Diskussion:

  • , zwei linear unabhängige Lösungen beschreibt ruhendes Teilchen der Masse m, Ruheenergie
  • Zwei Komponenten u1, u2 beschreiben Spin - ½, z.B.

     (1.68)
→ Dirac-Gleichung beschreibt Spin- ½ Teilchen.
zwei linear unabhängige Lösungen      (1.69)
hat aber negative Energie! Interpretationsproblem wie Klein-Gordon-Gleichung. Zufriedenstellend gelöst erst in der Quantenfeldtheorie (Teilchenerzeugung und Vernichtung).

„Anschauliche Interpretation“

  • Annahme vieler gleichartiger Spin- ½ -Teilchen der Masse m
  • Annahme: Es gibt einen Vielteilchen-Grundzustand („Vakuumzustand“), in dem alle Einzelteilchenzustände besetzt sind.
  • Ein einziges Elektron ist dann z.B. das Vakuum +1 Teilchen in einem Zustand .
  • Teilchen-Loch“ Anregung: Anregung von nach lässt „Loch“ im „Fermi-See“ zurück: dies hat positive Ladung (fehlende negative Ladung)
  • nützliches Konzept für die Halbleiterphysik

Vorteile der Löcher-Theorie:

  • Vorrausage des Positron (Antiteilchen zum Elektron, gleiche Masse, entgegengesetzte Ladung)
  • Paarvernichtung / Erzeugung

Nachteile der Löcher-Theorie:

  • Unendlicher See nicht beobachteter Elektronen
  • Beruht auf „Paul-Prinzip“ und funktionier bei der Klein-Gordon-Gleichung, die Bosonen mit Spin 0 beschreibt nicht.

→ konsistente Lösung dieses Problems in der zweiten Quantisierung (letzer Teil VL): als Feld, das quantisiert wird.

b) Laufenden ebene Wellen („laufende, nicht ruhende Teilchen“) Ansatz mit

     (1.70)


(1.70) sind Gleichundgen für Spinoren (4-Komponentige Vektoren).

Lösung wie Matrixgleichung möglich, einfacher Trick:



     (1.71)

Insgesamt existieren also 4 linear unabhängige Lösungen mit der Basis

     (1.72)


AUFGABE: Bestimme Normierungsfaktor N so, dass Zeige aber Hierbei gilt