Lösungen der Dirac-Gleichung (freies Teilchen)

Aus PhysikWiki
Zur Navigation springen Zur Suche springen


Wir starten von

Separationsansatz

     (1.66)


Ansatz (Eigenwertgleichung)

(hat 2 Eigenwerte)
     (1.67)


Diskussion

  • , zwei linear unabhängige Lösungen beschreibt ruhendes Teilchen der Masse m, Ruheenergie
  • Zwei Komponenten u1, u2 beschreiben Spin - ½, z.B.
     (1.68)
→ Dirac-Gleichung beschreibt Spin- ½ Teilchen.
zwei linear unabhängige Lösungen      (1.69)
hat aber negative Energie! Interpretationsproblem wie Klein-Gordon-Gleichung. Zufriedenstellend gelöst erst in der Quantenfeldtheorie (Teilchenerzeugung und Vernichtung).


„Anschauliche Interpretation“

  • Annahme vieler gleichartiger Spin- ½ -Teilchen der Masse m
  • Annahme: Es gibt einen Vielteilchen-Grundzustand („Vakuumzustand“), in dem alle Einzelteilchenzustände besetzt sind.
  • Ein einziges Elektron ist dann z.B. das Vakuum +1 Teilchen in einem Zustand .
  • Teilchen-Loch“ Anregung: Anregung von nach lässt „Loch“ im „Fermi-See“ zurück: dies hat positive Ladung (fehlende negative Ladung)
  • nützliches Konzept für die Halbleiterphysik

Vorteile der Löcher-Theorie:

  • Vorrausage des Positron (Antiteilchen zum Elektron, gleiche Masse, entgegengesetzte Ladung)
  • Paarvernichtung / Erzeugung

Nachteile der Löcher-Theorie:

  • Unendlicher See nicht beobachteter Elektronen
  • Beruht auf „Paul-Prinzip“ und funktionier bei der Klein-Gordon-Gleichung, die Bosonen mit Spin 0 beschreibt nicht.

→ konsistente Lösung dieses Problems in der zweiten Quantisierung (letzer Teil VL): als Feld, das quantisiert wird.

Laufenden ebene Wellen

(„laufende, nicht ruhende Teilchen“)

Ansatz mit

     (1.70)


(1.70) sind Gleichundgen für Spinoren (4-Komponentige Vektoren).

Lösung wie Matrixgleichung möglich, einfacher Trick:


   (1.71)

Insgesamt existieren also 4 linear unabhängige Lösungen mit der Basis

     (1.72)


AUFGABE: Bestimme Normierungsfaktor N so, dass Zeige aber Hierbei gilt