Quantentheoretischer Zugang: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Zeile 38: Zeile 38:
k's zu zählen ist oft leichter als n's
k's zu zählen ist oft leichter als n's
z.B <math>\sum\limits_{\text{Zust }\!\!\ddot{\mathrm{a}}\!\!\text{ nde}}{...}\triangleq \sum\limits_{\text{k }\!\!'\!\!\text{ s}}{...}</math>
z.B <math>\sum\limits_{\text{Zust }\!\!\ddot{\mathrm{a}}\!\!\text{ nde}}{...}\triangleq \sum\limits_{\text{k }\!\!'\!\!\text{ s}}{...}</math>
<math>\begin{align}
<math>{{\sum }_{\text{\vec{k}}\in \text{3-Dim Raum}}}=\sum\limits_{\text{k}}{\frac{{{\Delta }^{\text{3}}}k}{\underbrace{{{\Delta }^{\text{3}}}k}_{\Delta {{k}_{x\Delta }}\Delta {{k}_{y}}\Delta {{k}_{z}}}}}={{\left( \frac{L}{2\pi } \right)}^{3}}\sum\limits_{\text{k}}{{{\Delta }^{\text{3}}}k}\to {{\left( \frac{L}{2\pi } \right)}^{3}}\int_{{}}^{{}}{{{d}^{\text{3}}}k}</math>
  & {{\varphi }_{{\vec{k}}}}=\frac{1}{\sqrt{V}}{{e}^{i\vec{k}.\vec{r}}},{{k}_{i}}=\frac{2\pi }{L}{{m}_{i}},\,\,{{m}_{i}}\in \mathbb{Z} \\
& \vec{k}.\vec{r}=\sum\limits_{i}{{{k}_{i}}{{x}_{i}}} \\
& \sum\limits_{\text{Zust }\!\!\ddot{\mathrm{a}}\!\!\text{ nde}}{...}\triangleq \sum\limits_{\text{k }\!\!'\!\!\text{ s}}{...} \\
& \sum\limits_{\text{\vec{k}}\in 3\text{-Dim Raum}}{{}}=\sum\limits_{\text{k}}{\frac{\Delta {}^\text{3}k}{\underbrace{\Delta {}^\text{3}k}_{\Delta {{k}_{x\Delta }}\Delta {{k}_{y}}\Delta {{k}_{z}}}}}={{\left( \frac{L}{2\pi } \right)}^{3}}\sum\limits_{\text{k}}{\Delta {}^\text{3}k}\to {{\left( \frac{L}{2\pi } \right)}^{3}}\int_{{}}^{{}}{d{}^\text{3}k} \\
\end{align}</math>
<math>\Delta k</math> sind dicht ~ <math>\frac{1}{L}\to \int_{{}}^{{}}{{}}</math>
<math>\Delta k</math> sind dicht ~ <math>\frac{1}{L}\to \int_{{}}^{{}}{{}}</math>
Summe über die k-Quantenzahlen werden also so übersetzt
Summe über die k-Quantenzahlen werden also so übersetzt

Version vom 29. August 2010, 15:20 Uhr

Einteilchenzustände im Kasten

Betrachte Gase, also Teilchen im Kasten, auch möglich Mödell für Festkörper:

Kastne mit Länge L und Energiedifferenz (Volumen)

Die Dichte des Energienivieaus ist bestimmt durch die Länge L. für unendlich hohe Wände Einteilchenfunktion mit und Energieeigenwerten Diracschreibweise: Zustand nur durch Qantenzahlen chartisiert (3-Quantenzahlen)

Großer Kasten, dichtliegende Zustände

in einem großen Kasten sollen die Randbeingungne nicht so wichtig sien, Modell für makroskopischen Körper, nehmen periodische Randbedingungen periodisch angeordnete Kästen nebeneinander

Ansatz:

freie Teilchen im Kasten:


Damit sind die Quantenzahlen k_i im großen (makroskopischen) Kasten festgelegt als: man kann mit den ebenen Wellen besser als mit den Sinusfunktionen rechen, weil: man oft Quantenzahlen bzw. Zuständer zählen mus (wie in der klassichen Statiski beim Würfel =6)

k's zu zählen ist oft leichter als n's z.B Fehler beim Parsen (Syntaxfehler): {\displaystyle {{\sum }_{\text{\vec{k}}\in \text{3-Dim Raum}}}=\sum\limits_{\text{k}}{\frac{{{\Delta }^{\text{3}}}k}{\underbrace{{{\Delta }^{\text{3}}}k}_{\Delta {{k}_{x\Delta }}\Delta {{k}_{y}}\Delta {{k}_{z}}}}}={{\left( \frac{L}{2\pi } \right)}^{3}}\sum\limits_{\text{k}}{{{\Delta }^{\text{3}}}k}\to {{\left( \frac{L}{2\pi } \right)}^{3}}\int_{{}}^{{}}{{{d}^{\text{3}}}k}} sind dicht ~ Summe über die k-Quantenzahlen werden also so übersetzt