Warning: Trying to access array offset on value of type null in /var/www/html/extensions/MathSearch/includes/FormulaInfo.php on line 115
Warning: Trying to access array offset on value of type null in /var/www/html/extensions/MathSearch/includes/FormulaInfo.php on line 118
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in /var/www/html/extensions/MathSearch/includes/FormulaInfo.php on line 118
Warning: Trying to access array offset on value of type null in /var/www/html/extensions/MathSearch/includes/FormulaInfo.php on line 115
Warning: Trying to access array offset on value of type null in /var/www/html/extensions/MathSearch/includes/FormulaInfo.php on line 118
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in /var/www/html/extensions/MathSearch/includes/FormulaInfo.php on line 118 – PhysikWiki
LaTeXML (experimentell; verwendet MathML) rendering
MathML (0 B / 8 B) :
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (6.729 KB / 559 B) :
<mathclass="mwe-math-element"xmlns="http://www.w3.org/1998/Math/MathML"><mrowdata-mjx-texclass="ORD"><mstyledisplaystyle="true"scriptlevel="0"><mrowdata-mjx-texclass="ORD"><mtablecolumnalign="right left right left right left right left right left right left"columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em"displaystyle="true"rowspacing="3pt"><mtr><mtd></mtd><mtd><mrowdata-mjx-texclass="ORD"><mfrac><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><mi>ρ</mi><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><modata-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mi>ρ</mi><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mover><mi>ξ</mi><mo>˙</mo></mover></mrow></mrow><modata-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrowdata-mjx-texclass="ORD"><mfrac><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><mi>ρ</mi><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><modata-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>+</mo><munderover><moform="prefix"texclass="OP">∑</mo><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mn>3</mn><mi>N</mi></mrow></mrow></munderover><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mrowdata-mjx-texclass="ORD"><mfrac><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><mi>ρ</mi><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><modata-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><msub><mi>q</mi><mrowdata-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrowdata-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mrowdata-mjx-texclass="ORD"><mfrac><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><mi>ρ</mi><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><modata-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><msub><mi>p</mi><mrowdata-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mover><mi>p</mi><mo>˙</mo></mover></mrow></mrow><mrowdata-mjx-texclass="ORD"><mi>k</mi></mrow></msub><modata-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>ρ</mi><mi>d</mi><mi>i</mi><mi>v</mi><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mover><mi>ξ</mi><mo>˙</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>ρ</mi><mi>d</mi><mi>i</mi><mi>v</mi><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mover><mi>ξ</mi><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrowdata-mjx-texclass="ORD"><mfrac><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><mi>ρ</mi><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><modata-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mi>ρ</mi><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mover><mi>ξ</mi><mo>˙</mo></mover></mrow></mrow><modata-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrowdata-mjx-texclass="ORD"><mfrac><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><mi>ρ</mi><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><modata-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>+</mo><munderover><moform="prefix"texclass="OP">∑</mo><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mn>3</mn><mi>N</mi></mrow></mrow></munderover><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mrowdata-mjx-texclass="ORD"><mfrac><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><mi>ρ</mi><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><modata-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><msub><mi>q</mi><mrowdata-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrowdata-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mrowdata-mjx-texclass="ORD"><mfrac><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><mi>ρ</mi><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><modata-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>∂</mi><msub><mi>p</mi><mrowdata-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mover><mi>p</mi><mo>˙</mo></mover></mrow></mrow><mrowdata-mjx-texclass="ORD"><mi>k</mi></mrow></msub><modata-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrowdata-mjx-texclass="ORD"><mfrac><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>d</mi><mi>ρ</mi><mrowdata-mjx-texclass="INNER"><modata-mjx-texclass="OPEN">(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><modata-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrowdata-mjx-texclass="ORD"><mrowdata-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Klassisch- mechanische Gleichgewichtsverteilungen page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php