Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2555.51 on revision:2555

* Page found: Das ideale Fermigas (eq math.2555.51)

(force rerendering)

Occurrences on the following pages:

Hash: 8127e84bb8003a9c12035b0d85f9a9ca

TeX (original user input):

\begin{align}

& I=\int_{-\infty }^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=2\int_{0}^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=-2\left[ {{x}^{2}}\frac{1}{\left( {{e}^{x}}+1 \right)} \right]_{0}^{\infty }+4\int_{0}^{\infty }{{}}dx\frac{x}{\left( {{e}^{x}}+1 \right)} \\

& \left[ {{x}^{2}}\frac{1}{\left( {{e}^{x}}+1 \right)} \right]_{0}^{\infty }=0 \\

& \int_{0}^{\infty }{{}}dx\frac{x}{\left( {{e}^{x}}+1 \right)}=\frac{{{\pi }^{2}}}{12} \\

& \Rightarrow I=\frac{{{\pi }^{2}}}{3} \\

\end{align}

TeX (checked):

{\begin{aligned}&I=\int _{-\infty }^{\infty }{}dx{{x}^{2}}{\frac {{e}^{x}}{{\left({{e}^{x}}+1\right)}^{2}}}=2\int _{0}^{\infty }{}dx{{x}^{2}}{\frac {{e}^{x}}{{\left({{e}^{x}}+1\right)}^{2}}}=-2\left[{{x}^{2}}{\frac {1}{\left({{e}^{x}}+1\right)}}\right]_{0}^{\infty }+4\int _{0}^{\infty }{}dx{\frac {x}{\left({{e}^{x}}+1\right)}}\\&\left[{{x}^{2}}{\frac {1}{\left({{e}^{x}}+1\right)}}\right]_{0}^{\infty }=0\\&\int _{0}^{\infty }{}dx{\frac {x}{\left({{e}^{x}}+1\right)}}={\frac {{\pi }^{2}}{12}}\\&\Rightarrow I={\frac {{\pi }^{2}}{3}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (47.809 KB / 4.954 KB) :

I = - 𝑑 x x 2 e x ( e x + 1 ) 2 = 2 0 𝑑 x x 2 e x ( e x + 1 ) 2 = - 2 [ x 2 1 ( e x + 1 ) ] 0 + 4 0 𝑑 x x ( e x + 1 ) [ x 2 1 ( e x + 1 ) ] 0 = 0 0 𝑑 x x ( e x + 1 ) = π 2 12 I = π 2 3 absent 𝐼 superscript subscript differential-d 𝑥 superscript 𝑥 2 superscript 𝑒 𝑥 superscript superscript 𝑒 𝑥 1 2 2 superscript subscript 0 differential-d 𝑥 superscript 𝑥 2 superscript 𝑒 𝑥 superscript superscript 𝑒 𝑥 1 2 2 superscript subscript delimited-[] superscript 𝑥 2 1 superscript 𝑒 𝑥 1 0 4 superscript subscript 0 differential-d 𝑥 𝑥 superscript 𝑒 𝑥 1 absent superscript subscript delimited-[] superscript 𝑥 2 1 superscript 𝑒 𝑥 1 0 0 absent superscript subscript 0 differential-d 𝑥 𝑥 superscript 𝑒 𝑥 1 superscript 𝜋 2 12 absent absent 𝐼 superscript 𝜋 2 3 {\displaystyle{\displaystyle\begin{aligned} \par&\displaystyle I=\int_{-\infty% }^{\infty}{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left({{e}^{x}}+1\right)}^{2}}}=2% \int_{0}^{\infty}{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left({{e}^{x}}+1\right)}^{% 2}}}=-2\left[{{x}^{2}}\frac{1}{\left({{e}^{x}}+1\right)}\right]_{0}^{\infty}+4% \int_{0}^{\infty}{{}}dx\frac{x}{\left({{e}^{x}}+1\right)}\\ \par&\displaystyle\left[{{x}^{2}}\frac{1}{\left({{e}^{x}}+1\right)}\right]_{0}% ^{\infty}=0\\ \par&\displaystyle\int_{0}^{\infty}{{}}dx\frac{x}{\left({{e}^{x}}+1\right)}=% \frac{{{\pi}^{2}}}{12}\\ \par&\displaystyle\Rightarrow I=\frac{{{\pi}^{2}}}{3}\\ \par\end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.192 KB / 557 B) :

I=dxx2ex(ex+1)2=20dxx2ex(ex+1)2=2[x21(ex+1)]0+40dxx(ex+1)[x21(ex+1)]0=00dxx(ex+1)=π212I=π23

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das ideale Fermigas page

Identifiers

  • I
  • x
  • x
  • e
  • x
  • e
  • x
  • x
  • x
  • e
  • x
  • e
  • x
  • x
  • e
  • x
  • x
  • x
  • e
  • x
  • x
  • e
  • x
  • x
  • x
  • e
  • x
  • π
  • I
  • π

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results