Kräftefreie Schrödingergleichung

Aus PhysikWiki
Zur Navigation springen Zur Suche springen



Kräftefreie Schrödingergleichung

(Keine äußeren Potenziale)

Die Bewegungsgleichung für die Materiewellenfunktion

soll die folgenden Postulate erfüllen:

  1. Sie soll eine DGL 1.Ordnung in der zeit sein, damit durch die Anfangsverteilung bestimmt ist ( der qm. Zustand ist vollständig durch festgelegt).
  2. Sie soll linear in sein, damit das Superpositionsprinzip gilt.
  3. Außerdem soll sie homogen sein.
    Durch das Superpositionsprinzip sind Linearkombinationen von Lösungen wieder Lösungen. Damit werden die Interferenzeffekte mathematisch greifbar.
  4. Die Gleichung soll keine speziellen Bewegungsgrößen wie enthalten. Nur so können Wellenpakete durch Überlagerung verschiedener Werte gebildet werden.
  5. Ebene Wellen: mit sollen Lösung sein. Dabei gilt wegen des Zusammenhangs

Somit auch für Photonen:

Also ergibt sich:

Also:

Dies ist die freie, zeitabhängige Schrödingergleichung

Bemerkungen

  1. Die physikalische Bedeutung der Wellenfunktion : ist die Wahrscheinlichkeit, das Teilchen zur Zeit t im Volumen d³r am Ort zu finden. wird Wahrscheinlichkeitsamplitude genannt. Sie ist komplex und besteht aus Betrag und Phase. Dabei sind die relativen Phasen in Interferenzexperimenten beobachtbar. ist die Aufenthaltswahrscheinlichkeitsdichte.
  2. Normierung:
  3. Die Schrödingergleichung ist ZEITUMKEHRINVARIANT, das heißt zu jedem Bewegungsablauf ist auch der zeitumgekehrte ein physikalisch möglicher Vorgang:

Zeitumkehrinvarianz

Die Transformationsvorschrift lautet:

Also:

Beweis:

werde gelöst von

Die ganze Gleichung kann natürlich komplex konjugiert werden:

Ersetzt man nun t durch -t, so folgt:

Also: Mit ist auch Lösung der Schrödingergleichung


Zu Punkt 3: Mathematisch bedeutet dies: Alle Transformationen müssen unitär sein ! Physikalisch sind nur unitäre Transformationen, weil man sonst durch Zeitumkehr nicht wieder in den Ausgangszustand zurückkommt !


Wellenpakete

Ebene Wellen der Form

haben eine räumlich homogene Wahrscheinlichkeitsdichte |C|², falls dieser Vorfaktor nicht vom Ort abhängt ( im Gegensatz zu Kugelwellen). Die Phase verschwindet bei Betragsbildung völlig! Lokalisierte Zustände können grundsätzlich durch die Superposition ebener Wellen dargestellt werden:

Man kann sich derartige Wellenpakete veranschaulichen: eindimensional: Die Phase kx-w(k)t kann nun um k=ko entwickelt werden:


Dabei sei:

Somit folgt für obige Wellenfunktion ( unser Paketchen):

Dabei stellt

ein Trägerwelle mit der Phasengeschwindigkeit

dar und

repräsentiert eine Einhüllende A(x,t), die langsam zeit- und ortsveränderlich ist, da ja nur die Terme mit

nennenswerte Beiträge zum Integral liefern. Wegen der Taylorentwicklung ,macht dieser Schritt jedoch nur Sinn für Systeme, die um k0 lokalisiert sind ! Also für impulsmäßig lokalisierte Systeme ( endliche Farbbandbreite eines Lichtpulses etc...). Grafisch:


Bewegung der Einhüllenden: Setze:

Dies gilt jedoch nur infinitesimal. Man kann jedoch das MAXIMUM von A(x,t) wählen:

Dies jedoch bedingt:

Also:

Jedenfalls bewegt sich der Schwerpunkt mit der Gruppengeschwindigkeit vg

als klassische Teilchengeschwindigkeit

Zeitliche Entwicklung der Einhüllenden:

Sei t=0

Dies ist gerade die Fourierdarstellung mit der Fourier- Transformierten

Interpretation der Unschärferelation: je schärfer lokalisiert im k- Raum das Wellenpaket ist, desto breiter ist es im x-Raum und umgekehrt. Dies ist jedoch eine ganz allgemeine Eigenschaft der Fouriertransformation.


Beispiel: Stufenfunktion ( rec-Func)


Die Fouriertransformierte der Rec- Funktion ist als die Sincfunktion mit der inversen Breite der Spaltfunktion. Denn:

moduliert im k- Raum entsprechend schnell, wenn die Konstante

entsprechend groß ist !

Für t>0 zerfließt das Wellenpaket, da sich die einzelnen k- Komponenten verschieden schnell ausbreiten:

Grund ist die nichtlineare Dispersionsbeziehung

Das quantenmechanische Wellenpaket zeigt nun bereits im kräftefreien Fall Dispersion (Im Gegensatz zu elektromagnetischen Wellen im Vakuum). Das heißt, beispielsweise ein lokalisiertes Gauß- Paket „zerfließt " bei Ausbreitung mit der Gruppengeschwindigkeit vg. Dies muss im Sinne von Wahrscheinlichkeit interpretiert werden. (Interessantes Argument gegen Befürworter einer Theorie von Materiedichte: Das Auseinanderlaufen des Paketes wäre ein Widerspruch zur Stabilität der Materie !) Es handelt sich um eine Verbreiterung der Aufenthaltswahrscheinlichkeit und nicht um ein Zerfließen von Materie !! Also: nicht die Materie ist hier diffus verteilt, sondern nur ihre Aufenthaltswahrscheinlichkeit !! Makroskopische Objekte zerfließen auf sehr langer Zeitskala! Auch hinsichtlich der Aufenthaltswahrscheinlichkeit!