Kräftefreie Schrödingergleichung
Der Artikel Kräftefreie Schrödingergleichung basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 1.Kapitels (Abschnitt 2) der Quantenmechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
Kräftefreie Schrödingergleichung
(Keine äußeren Potenziale)
Die Bewegungsgleichung für die Materiewellenfunktion
soll die folgenden Postulate erfüllen:
- Sie soll eine DGL 1.Ordnung in der zeit sein, damit durch die Anfangsverteilung bestimmt ist ( der qm. Zustand ist vollständig durch festgelegt).
- Sie soll linear in sein, damit das Superpositionsprinzip gilt.
- Außerdem soll sie homogen sein.
- Durch das Superpositionsprinzip sind Linearkombinationen von Lösungen wieder Lösungen. Damit werden die Interferenzeffekte mathematisch greifbar.
- Die Gleichung soll keine speziellen Bewegungsgrößen wie enthalten. Nur so können Wellenpakete durch Überlagerung verschiedener Werte gebildet werden.
- Ebene Wellen: mit sollen Lösung sein. Dabei gilt wegen des Zusammenhangs
Somit auch für Photonen:
Also ergibt sich:
Also:
Dies ist die freie, zeitabhängige Schrödingergleichung
Bemerkungen
- Die physikalische Bedeutung der Wellenfunktion : ist die Wahrscheinlichkeit, das Teilchen zur Zeit t im Volumen d³r am Ort zu finden. wird Wahrscheinlichkeitsamplitude genannt. Sie ist komplex und besteht aus Betrag und Phase. Dabei sind die relativen Phasen in Interferenzexperimenten beobachtbar. ist die Aufenthaltswahrscheinlichkeitsdichte.
- Normierung:
- Die Schrödingergleichung ist ZEITUMKEHRINVARIANT, das heißt zu jedem Bewegungsablauf ist auch der zeitumgekehrte ein physikalisch möglicher Vorgang:
Zeitumkehrinvarianz
Die Transformationsvorschrift lautet:
Also:
Beweis:
Die ganze Gleichung kann natürlich komplex konjugiert werden:
Ersetzt man nun t durch -t, so folgt:
Also: Mit ist auch Lösung der Schrödingergleichung
Zu Punkt 3: Mathematisch bedeutet dies: Alle Transformationen müssen unitär sein ! Physikalisch sind nur unitäre Transformationen, weil man sonst durch Zeitumkehr nicht wieder in den Ausgangszustand zurückkommt !
Wellenpakete
Ebene Wellen der Form
haben eine räumlich homogene Wahrscheinlichkeitsdichte |C|², falls dieser Vorfaktor nicht vom Ort abhängt ( im Gegensatz zu Kugelwellen). Die Phase verschwindet bei Betragsbildung völlig! Lokalisierte Zustände können grundsätzlich durch die Superposition ebener Wellen dargestellt werden:
Man kann sich derartige Wellenpakete veranschaulichen: eindimensional: Die Phase kx-w(k)t kann nun um k=ko entwickelt werden:
Dabei sei:
Somit folgt für obige Wellenfunktion ( unser Paketchen):
Dabei stellt
ein Trägerwelle mit der Phasengeschwindigkeit
dar und
repräsentiert eine Einhüllende A(x,t), die langsam zeit- und ortsveränderlich ist, da ja nur die Terme mit
nennenswerte Beiträge zum Integral liefern. Wegen der Taylorentwicklung ,macht dieser Schritt jedoch nur Sinn für Systeme, die um k0 lokalisiert sind ! Also für impulsmäßig lokalisierte Systeme ( endliche Farbbandbreite eines Lichtpulses etc...). Grafisch:
Bewegung der Einhüllenden:
Setze:
Dies gilt jedoch nur infinitesimal. Man kann jedoch das MAXIMUM von A(x,t) wählen:
Dies jedoch bedingt:
Also:
Jedenfalls bewegt sich der Schwerpunkt mit der Gruppengeschwindigkeit vg
als klassische Teilchengeschwindigkeit
Zeitliche Entwicklung der Einhüllenden:
Sei t=0
Dies ist gerade die Fourierdarstellung mit der Fourier- Transformierten
Interpretation der Unschärferelation: je schärfer lokalisiert im k- Raum das Wellenpaket ist, desto breiter ist es im x-Raum und umgekehrt. Dies ist jedoch eine ganz allgemeine Eigenschaft der Fouriertransformation.
Beispiel: Stufenfunktion ( rec-Func)
Die Fouriertransformierte der Rec- Funktion ist als die Sincfunktion mit der inversen Breite der Spaltfunktion. Denn:
moduliert im k- Raum entsprechend schnell, wenn die Konstante
entsprechend groß ist !
Für t>0 zerfließt das Wellenpaket, da sich die einzelnen k- Komponenten verschieden schnell ausbreiten:
Grund ist die nichtlineare Dispersionsbeziehung
Das quantenmechanische Wellenpaket zeigt nun bereits im kräftefreien Fall Dispersion (Im Gegensatz zu elektromagnetischen Wellen im Vakuum). Das heißt, beispielsweise ein lokalisiertes Gauß- Paket „zerfließt " bei Ausbreitung mit der Gruppengeschwindigkeit vg. Dies muss im Sinne von Wahrscheinlichkeit interpretiert werden. (Interessantes Argument gegen Befürworter einer Theorie von Materiedichte: Das Auseinanderlaufen des Paketes wäre ein Widerspruch zur Stabilität der Materie !) Es handelt sich um eine Verbreiterung der Aufenthaltswahrscheinlichkeit und nicht um ein Zerfließen von Materie !! Also: nicht die Materie ist hier diffus verteilt, sondern nur ihre Aufenthaltswahrscheinlichkeit !! Makroskopische Objekte zerfließen auf sehr langer Zeitskala! Auch hinsichtlich der Aufenthaltswahrscheinlichkeit!