Wahrscheinlichkeitsbegriff

Aus PhysikWiki
Zur Navigation springen Zur Suche springen




Ereignis
Messergebnis von Observablen (event) oder fester Mikrozustand (der realisiert wird).

Ereignisse bilden einen Abelschen Verband (Ereignisalgebra)

Merke: Ereignisalgebra = Abelscher verband

mit Mengentheoretischen Verknüpfungen

Vereinigung (oder) und Durchschnitt (und)

Für A,B,C gilt:

(Kommutativitätsgesetz)

Assoziativität

(Verschmelzungsgesetz)

Distributivgesetz

Existenz der Eins (sicheres Ereignis) und Existenz des Nullelements: "leeres Ereignis"

Existenz des Komplements

Induzierte Halbordnung

A impliziert B, falls

Also: menge A liegt in B

A und B sind disjunkt, falls

Vollständig disjunkte Ereignismenge (sample set)

Beispiel:

Ereignismenge

Bemerkung: Diese Menge M ist keine Algebra, da

Wahrscheinlichkeit

Empirische Definition

mit

relative Häufigkeit des Ereignisses A

N(A) ist die Zahl der Experimente mit dem Ergebnis A

N ist die Zahl der Experimente insgesamt

axiomatische Definition (Kolmogoroff)

Sei A

(Boolscher Verband)

Sei

das sichere Ereignis.

Dann erfüllt die Wahrscheinlichkeit P(A)

die Axiome:

Für disjunkte Ereignisse:

Folgerung

Zerlegung in disjunkte Ereignisse

für beliebige A1, A2:

Also folgt für Wahrscheinlichkeiten:

Also:

Speziell

,
falls 

bedingte Wahrscheinlichkeit

Die Bedingte Wahrscheinlichkeit (A unter der Bedingung, dass B), ergibt sich gemäß

Also A unter der Bedingung, dass B eingetreten ist!

Falls A von B unabhängig ist, so gilt:

Nebenbemerkung, ebenso gilt:

Zufallsvariablen

Eine Zufallsvariable ist gegeben durch

  1. eine Menge M von vollständig disjunkten Ereignissen (sample set)
  2. eine Wahrscheinlichkeitsverteilung
  3. über M

es gilt die Normierung

Definiert man sich dies für eine kontinuierliche Menge, also ,


so gilt:

definiert eine Wahrscheinlichkeitsdichte oder auch Wahrscheinlichkeitsverteilung .


Übergang zu diskreten Ereignissen:

mit Normierung

Physikalische Interpretation

Die Wahrscheinlichkeitsverteilung kann man sich realisiert denken durch ein Ensemble von vielen äquivalenten Systemen, also durch eine Dichteverteilung

der Mitglieder des Ensembles mit Werten zwischen x und x+dx

Verallgemeinerung auf d Zufallsvariablen

Die Normierung geschieht dann in einem d- Dimensionalen Raum.

Mittelwert (Erwartungswert) einer Zufallsvariablen x:

für eine beliebige Funktion f(x):

Nebenbemerkung

Der Mittelwert ist ein lineares Funktional

Linearität:

Unkorrelierte Zufallsvariable:

x1 und x2 heißen unkorreliert, falls

Dann gilt:

Beweis:

Merke: In Bezug auf die Wahrscheinlichkeitsverteilungen ist unkorreliert gleichbedeutend mit separabel _> die Phasen werden addiert!

Sind die Zustände verschränkt, so können die Phasen nicht addiert werden.

Die Einführung einer Symplektik ist nötig! (siehe unten).

Zusammenhang zwischen Wahrscheinlichkeitsverteilung und Mittelwerten

Wir verstehen als n.tes Moment einer Wahrscheinlichkeitsverteilung:

Momentenerzeugende:

Durch die Angabe aller nicht verschwindender Momente ist eine Wahrscheinlichkeitsverteilung vollständig festgelegt!

Verallgemeinerung auf d Zufallsvariablen:

ein Moment der Ordnung

Momentenerzeugende:

Kumulante

ist definiert durch die Kumulantenerzeugende:

Eigenschaft

Kumulanten sind ADDITIV für unkorrelierte Zufallsvariablen (Dies gilt nicht für die Momente!!)

Beweis: seien x1, x2 unkorreliert:

Fluktuation:

mit

Bildung der Varianz:

Als Maß für die Breite einer Verteilung

Korrelationsmatrix:

Nichtdiagonalelemente verschwinden für unkorrelierte Zufallsvariablen. Denn dann: separieren die Momente der WSK- Verteilung! Siehe oben

  • Korrelationsmatrix beschreibt die qm- Korrelationen über ihre Außerdiagonalelemente

Zusammenhang zwischen Kumulanten und Momenten:

Gaußverteilung / Normalverteilung

Mit Sigma als Standardabweichung

Normierung:

Wegen:

Nebenbemerkung, die Gaußverteilung ist bestimmt durch .

Alle höheren Kumulanten verschwinden!