Lagrangegleichungen 2. Art: Unterschied zwischen den Versionen
*>SchuBot Einrückungen Mathematik |
*>SchuBot K →Spezialfall konservative Kräfte: Interpunktion, replaced: ! → ! |
||
Zeile 98: | Zeile 98: | ||
Die sagenumwobene Lagrangegleichung 2. Art für konservative Kräfte ! | Die sagenumwobene Lagrangegleichung 2. Art für konservative Kräfte! | ||
Anmerkung: | Anmerkung: |
Aktuelle Version vom 12. September 2010, 23:29 Uhr
Der Artikel Lagrangegleichungen 2. Art basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 1.Kapitels (Abschnitt 5) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
Betrachten wir wieder das d'Alembertsche Prinzip:
Linke Seite:
Beweis für die letzte Deduktion:
Somit ergibt sich für die linke Seite
Ziel ist es, diese Seite durch die gesamte Kinetische Energie auszudrücken:
Somit folgt:
Der T-abhängige Ausdruck ist jedoch in völlig frei variierbar. Somit ist keine lineare Abhängigkeit der Variationen über verschiedene j gegeben.
Jedes ist für sich frei variierbar, so dass der Ausdruck auf der linken Seite für sich Null wird:
heißt Lagrange- Gleichungen 2. Art |
Die Lagrangegleichungen der zweiten Art können aus dem d ´Alembertschen Prinzip nur für holonome Zwangsbedingungen gewonnen werden (im Gegensatz zur Lagrangegleichung erster Art).
Dies liegt daran, dass nur für holonome Zwangsbedingungen generalisierte Koordinaten definiert werden können:
Spezialfall konservative Kräfte
Dies bedingt jedoch:
Wir können uns die Lagrangefunktion derart definieren, dass:
Es folgt:
Die sagenumwobene Lagrangegleichung 2. Art für konservative Kräfte!
Anmerkung:
- die genannte Lagrangegleichung L ist nicht eindeutig festgelegt
- L=T-V ist nur eine mögliche Form
- Dabei ist die kinetische Energie nur für skleronome Zwangsbedingungen eine homogene Bilinearform in
Anwendungsschema für Lagrangegleichungen zweiter Art:
MISSING
Die Atwoodsche Fallmaschine Generalisierte Koordinate: q
|
Beispiel 2: Eine Masse m rotiert mit Winkelgeschwindigkeit w an einem Faden der Länge Ro, welcher mit Geschwindigkeit c durch ein Loch gezogen wird (rheonome Zwangsbedingung). Generalisierte Koordinate q ist der Winkel
Drehimpuls:
|