Magnetostatische Feldgleichungen: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Elektrodynamik|2|3}}</noinclude> Sie gelten auch in quasistaischer Näherung: Die zeitliche Änderung muss viel kleiner sein als die r…“
 
 
(3 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<noinclude>{{Scripthinweis|Elektrodynamik|2|3}}</noinclude>
<noinclude>{{Scripthinweis|Elektrodynamik|2|3}}</noinclude>


Sie gelten auch in quasistaischer Näherung: Die zeitliche Änderung muss viel kleiner sein als die räumliche !!
Sie gelten auch in {{FB|quasistaischer Näherung}}: Die zeitliche Änderung muss viel kleiner sein als die räumliche!!


Mit dem Vektorpotenzial
Mit dem {{FB|Vektorpotenzial}}


<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math>
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math>


Welches nicht eindeutig ist, sondern beliebig gemäß
Welches nicht eindeutig ist, sondern beliebig gemäß
<math>\bar{A}(\bar{r})\to \bar{A}+\nabla \Psi </math>
:<math>\bar{A}(\bar{r})\to \bar{A}+\nabla \Psi </math>
umgeeicht werden kann.
umgeeicht werden kann.(<math>\Psi (\bar{r})</math> beliebig möglich, da <math>\nabla \times \nabla \Psi =0</math>)
(
 
<math>\Psi (\bar{r})</math>
beliebig möglich, da
<math>\nabla \times \nabla \Psi =0</math>
)


Mit diesem Vektorpotenzial also kann man schreiben:
Mit diesem Vektorpotenzial also kann man schreiben:


<math>\bar{B}=rot\bar{A}(\bar{r})=\nabla \times \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math>
:<math>\bar{B}=rot\bar{A}(\bar{r})=\nabla \times \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math>


Beweis:
Beweis:


<math>\begin{align}
:<math>\begin{align}
& rot\bar{A}(\bar{r})=\nabla \times \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}\times \bar{j}(\bar{r}\acute{\ }) \\
& rot\bar{A}(\bar{r})=\nabla \times \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}\times \bar{j}(\bar{r}\acute{\ }) \\
& {{\nabla }_{r}}\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=-\frac{\bar{r}-\bar{r}\acute{\ }}{{{\left| \bar{r}-\bar{r}\acute{\ } \right|}^{3}}} \\
& {{\nabla }_{r}}\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=-\frac{\bar{r}-\bar{r}\acute{\ }}{{{\left| \bar{r}-\bar{r}\acute{\ } \right|}^{3}}} \\
Zeile 31: Zeile 27:
Es existiert ein Vektorpotenzial mit
Es existiert ein Vektorpotenzial mit


<math>\begin{align}
:<math>\begin{align}
& \bar{B}=rot\bar{A}(\bar{r}) \\
& \bar{B}=rot\bar{A}(\bar{r}) \\
& \Leftrightarrow  \\
& \Leftrightarrow  \\
\end{align}</math>
\end{align}</math>


<math>div\bar{B}=0</math>
:<math>div\bar{B}=0</math>


Beweis:
Beweis:


<math>div(rot\bar{A}(\bar{r}))=0</math>
:<math>div(rot\bar{A}(\bar{r}))=0</math>


es gibt keine Quellen der magnetischen Induktion ( es existieren keine "magnetischen Ladungen".
es gibt '''keine Quellen der magnetischen Induktion''' (es existieren keine "magnetischen Ladungen".


Aber: Magnetische Monopole wurden 1936 von Dirac postuliert, um die Quantelung der Ladung zu erklären. ( aus der quantenmechanischen Quantisierung des Drehimpulses !)
Aber: {{FB|Magnetische Monopole}} wurden 1936 von Dirac postuliert, um die Quantelung der Ladung zu erklären. (aus der quantenmechanischen Quantisierung des Drehimpulses!)
Dies wurde durch die vereinheitlichte Feldtheori4e wieder aufgenommen !
Dies wurde durch die vereinheitlichte Feldtheori4e wieder aufgenommen!
Es wurden extrem schwere magnetische Monopole postuliert, die beim Urknall in den ersten
Es wurden extrem schwere magnetische Monopole postuliert, die beim Urknall in den ersten <math>{{10}^{-35}}s</math> erzeugt worden sein sollen.
<math>{{10}^{-35}}s</math>
erzeugt worden sein sollen.


Sehr umstritten ist ein angeblicher experimenteller Nachweis von 1982 ( Spektrum der Wissenschaft, Juni 1982, S. 78 ff.)
Sehr umstritten ist ein angeblicher experimenteller Nachweis von 1982 (Spektrum der Wissenschaft, Juni 1982, S. 78 ff.)
'''Der Zusammenhang zwischen'''
'''Der Zusammenhang zwischen''' <math>\bar{B}(\bar{r})</math> und <math>\bar{j}(\bar{r})</math>:


<math>\bar{B}(\bar{r})</math>
und
<math>\bar{j}(\bar{r})</math>
:


<math>\begin{align}
:<math>\begin{align}
& \nabla \times \bar{B}(\bar{r})=\nabla \times \left( \nabla \times \bar{A}(\bar{r}) \right)=\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)-\Delta \bar{A}(\bar{r}) \\
& \nabla \times \bar{B}(\bar{r})=\nabla \times \left( \nabla \times \bar{A}(\bar{r}) \right)=\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)-\Delta \bar{A}(\bar{r}) \\
& \nabla \cdot \bar{A}(\bar{r})=\nabla \cdot \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }){{\nabla }_{r}}\cdot \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\
& \nabla \cdot \bar{A}(\bar{r})=\nabla \cdot \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }){{\nabla }_{r}}\cdot \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\
Zeile 67: Zeile 57:
\end{align}</math>
\end{align}</math>


Wobei die verwendete Kontinuitätsgleichung natürlich nur für statische Ladungsverteilungen gilt !
Wobei die verwendete {{FB|Kontinuitätsgleichung}} natürlich nur für statische Ladungsverteilungen gilt!


Im Allgemeinen Fall gilt dagegen:
Im Allgemeinen Fall gilt dagegen:


<math>\begin{align}
:<math>\begin{align}
& \Rightarrow \nabla \cdot \bar{A}(\bar{r})=-\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)-\frac{\partial }{\partial t}\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\rho (\bar{r}\acute{\ },t)}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\
& \Rightarrow \nabla \cdot \bar{A}(\bar{r})=-\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)-\frac{\partial }{\partial t}\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\rho (\bar{r}\acute{\ },t)}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\
& \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\rho (\bar{r}\acute{\ },t)}{\left| \bar{r}-\bar{r}\acute{\ } \right|}={{\mu }_{0}}{{\varepsilon }_{0}}\Phi (\bar{r},t) \\
& \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\rho (\bar{r}\acute{\ },t)}{\left| \bar{r}-\bar{r}\acute{\ } \right|}={{\mu }_{0}}{{\varepsilon }_{0}}\Phi (\bar{r},t) \\
Zeile 77: Zeile 67:
\end{align}</math>
\end{align}</math>


Mit dem Gaußschen Satz.
Mit dem {{FB|Gaußschen Satz}}.
Wenn das Potenzial jedoch ins unendliche hinreichend rasch abfällt, so gilt:
Wenn das Potenzial jedoch ins unendliche hinreichend rasch abfällt, so gilt:


<math>\oint\limits_{S\infty }{{}}{{d}^{3}}\bar{f}\acute{\ }\left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=0</math>
:<math>\oint\limits_{S\infty }{{}}{{d}^{3}}\bar{f}\acute{\ }\left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=0</math>


Also:
Also:


<math>\nabla \cdot \bar{A}(\bar{r})=-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\Phi (\bar{r},t)</math>
:<math>\nabla \cdot \bar{A}(\bar{r})=-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\Phi (\bar{r},t)</math>


Also:
Also:


<math>\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)={{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)</math>
:<math>\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)={{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)</math>


Auf der anderen Seite ergibt sich ganz einfach
Auf der anderen Seite ergibt sich ganz einfach


<math>\begin{align}
:<math>\begin{align}
& \Delta \bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\Delta }_{r}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }){{\Delta }_{r}}\cdot \left( \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right) \\
& \Delta \bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\Delta }_{r}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }){{\Delta }_{r}}\cdot \left( \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right) \\
& =\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\delta \left( \bar{r}-\bar{r}\acute{\ } \right)=-{{\mu }_{0}}\bar{j}(\bar{r}) \\
& =\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\delta \left( \bar{r}-\bar{r}\acute{\ } \right)=-{{\mu }_{0}}\bar{j}(\bar{r}) \\
\end{align}</math>
\end{align}</math> wegen <math>{{\Delta }_{r}}\cdot \left( \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=4\pi \delta \left( \bar{r}-\bar{r}\acute{\ } \right)</math>
 
wegen
 
<math>{{\Delta }_{r}}\cdot \left( \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=4\pi \delta \left( \bar{r}-\bar{r}\acute{\ } \right)</math>


Also:
Also:


<math>\nabla \times \bar{B}(\bar{r})=\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)-\Delta \bar{A}(\bar{r})={{\mu }_{0}}\bar{j}(\bar{r})+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)</math>
:<math>\nabla \times \bar{B}(\bar{r})=\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)-\Delta \bar{A}(\bar{r})={{\mu }_{0}}\bar{j}(\bar{r})+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)</math>


Für stationäre Ströme, die gerade bei stationären Ladungsverteilungen vorliegen, folgt:
Für stationäre Ströme, die gerade bei stationären Ladungsverteilungen vorliegen, folgt:


<math>\begin{align}
:<math>\begin{align}
& \nabla \times \bar{B}(\bar{r})={{\mu }_{0}}\bar{j}(\bar{r}) \\
& \nabla \times \bar{B}(\bar{r})={{\mu }_{0}}\bar{j}(\bar{r}) \\
& {{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)=0 \\
& {{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)=0 \\
\end{align}</math>
\end{align}</math>


Dies ist die differenzielle Form des Ampereschen Gesetzes
Dies ist die differenzielle Form des {{FB|Ampereschen Gesetzes}}.
Die Ströme sind die Wirbel der magnetischen Induktion !!
 
Die Ströme sind die Wirbel der magnetischen Induktion!!


Integration über eine Fläche F mit Rand
Integration über eine Fläche F mit Rand <math>\partial F</math> liefert die Intgralform:
<math>\partial F</math>
liefert die Intgralform:


<math>\begin{align}
:<math>\begin{align}
& \int_{{}}^{{}}{d\bar{f}\cdot }\nabla \times \bar{B}(\bar{r})=\oint\limits_{\partial F}{{}}d\bar{s}\bar{B}(\bar{r})=\int_{{}}^{{}}{d\bar{f}\cdot }{{\mu }_{0}}\bar{j}(\bar{r})={{\mu }_{0}}I \\
& \int_{{}}^{{}}{d\bar{f}\cdot }\nabla \times \bar{B}(\bar{r})=\oint\limits_{\partial F}{{}}d\bar{s}\bar{B}(\bar{r})=\int_{{}}^{{}}{d\bar{f}\cdot }{{\mu }_{0}}\bar{j}(\bar{r})={{\mu }_{0}}I \\
& \oint\limits_{\partial F}{{}}d\bar{s}\bar{B}(\bar{r})={{\mu }_{0}}I \\
& \oint\limits_{\partial F}{{}}d\bar{s}\bar{B}(\bar{r})={{\mu }_{0}}I \\
\end{align}</math>
\end{align}</math>


Mit dem Satz von Stokes
Mit dem {{FB|Satz von Stokes}}
Das sogenannte Durchflutungsgesetz !
Das sogenannte {{FB|Durchflutungsgesetz}}!


<u>'''Zusammenfassung:'''</u>
==Zusammenfassung==


<u>'''Magnetostatik:'''</u>
===Magnetostatik===


<math>div\bar{B}=0\Leftrightarrow \bar{B}=rot\bar{A}</math>
:<math>div\bar{B}=0\Leftrightarrow \bar{B}=rot\bar{A}</math> (quellenfreiheit)
( quellenfreiheit)


<math>\begin{align}
:<math>\begin{align}
& rot\bar{B}={{\mu }_{0}}\bar{j}(\bar{r})\Leftrightarrow \oint\limits_{\partial F}{{}}d\bar{s}\cdot \bar{B}={{\mu }_{0}}I \\
& rot\bar{B}={{\mu }_{0}}\bar{j}(\bar{r})\Leftrightarrow \oint\limits_{\partial F}{{}}d\bar{s}\cdot \bar{B}={{\mu }_{0}}I \\
& \Rightarrow \Delta \bar{A}=-{{\mu }_{0}}\bar{j}(\bar{r}) \\
& \Rightarrow \Delta \bar{A}=-{{\mu }_{0}}\bar{j}(\bar{r}) \\
\end{align}</math>
\end{align}</math>


Gilt jedoch nur im Falle der Coulomb- Eichung:
Gilt jedoch nur im Falle der {{FB|Coulomb-Eichung}}:


<math>\nabla \cdot \bar{A}=0</math>
:<math>\nabla \cdot \bar{A}=0</math>


Dies geschieht durch die Umeichung
Dies geschieht durch die Umeichung


<math>\begin{align}
:<math>\begin{align}
& \bar{A}\acute{\ }(\bar{r})\to \bar{A}+\nabla \Psi  \\
& \bar{A}\acute{\ }(\bar{r})\to \bar{A}+\nabla \Psi  \\
& \nabla \times \bar{A}\acute{\ }(\bar{r})\to \nabla \times \bar{A}+\nabla \times \nabla \Psi  \\
& \nabla \times \bar{A}\acute{\ }(\bar{r})\to \nabla \times \bar{A}+\nabla \times \nabla \Psi  \\
Zeile 153: Zeile 137:
\end{align}</math>
\end{align}</math>


<u>'''Elektrostatik:'''</u>
===Elektrostatik===


<math>rot\bar{E}=0\Leftrightarrow \bar{E}=-\nabla \Phi </math>
:<math>rot\bar{E}=0\Leftrightarrow \bar{E}=-\nabla \Phi </math> (Wirbelfreiheit)
( Wirbelfreiheit)


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }_{0}}\nabla \cdot \bar{E}=\rho  \\
& {{\varepsilon }_{0}}\nabla \cdot \bar{E}=\rho  \\
& \Leftrightarrow {{\varepsilon }_{0}}\oint\limits_{\partial V}{d\bar{f}\cdot }\bar{E}=Q \\
& \Leftrightarrow {{\varepsilon }_{0}}\oint\limits_{\partial V}{d\bar{f}\cdot }\bar{E}=Q \\
Zeile 164: Zeile 147:
differenzielle Form / integrale Form
differenzielle Form / integrale Form


<math>\Rightarrow \Delta \Phi =-\frac{1}{{{\varepsilon }_{0}}}\rho \left( {\bar{r}} \right)</math>
:<math>\Rightarrow \Delta \Phi =-\frac{1}{{{\varepsilon }_{0}}}\rho \left( {\bar{r}} \right)</math> ({{FB|Poissongleichung}})
( Poissongleichung)

Aktuelle Version vom 16. September 2010, 11:06 Uhr




Sie gelten auch in quasistaischer Näherung: Die zeitliche Änderung muss viel kleiner sein als die räumliche!!

Mit dem Vektorpotenzial

A¯(r¯)=μ04πR3d3r´j¯(r¯´)|r¯r¯´|

Welches nicht eindeutig ist, sondern beliebig gemäß

A¯(r¯)A¯+Ψ

umgeeicht werden kann.(Ψ(r¯) beliebig möglich, da ×Ψ=0)


Mit diesem Vektorpotenzial also kann man schreiben:

B¯=rotA¯(r¯)=×μ04πR3d3r´j¯(r¯´)|r¯r¯´|

Beweis:

rotA¯(r¯)=×μ04πR3d3r´j¯(r¯´)|r¯r¯´|=μ04πR3d3r´r1|r¯r¯´|×j¯(r¯´)r1|r¯r¯´|=r¯r¯´|r¯r¯´|3rotA¯(r¯)=μ04πR3d3r´j¯(r¯´)×r¯r¯´|r¯r¯´|3=B¯(r¯)

Folgende Aussagen sind äquivalent: Es existiert ein Vektorpotenzial mit

B¯=rotA¯(r¯)
divB¯=0

Beweis:

div(rotA¯(r¯))=0

es gibt keine Quellen der magnetischen Induktion (es existieren keine "magnetischen Ladungen".

Aber: Magnetische Monopole wurden 1936 von Dirac postuliert, um die Quantelung der Ladung zu erklären. (aus der quantenmechanischen Quantisierung des Drehimpulses!) Dies wurde durch die vereinheitlichte Feldtheori4e wieder aufgenommen! Es wurden extrem schwere magnetische Monopole postuliert, die beim Urknall in den ersten 1035s erzeugt worden sein sollen.

Sehr umstritten ist ein angeblicher experimenteller Nachweis von 1982 (Spektrum der Wissenschaft, Juni 1982, S. 78 ff.) Der Zusammenhang zwischen B¯(r¯) und j¯(r¯):


×B¯(r¯)=×(×A¯(r¯))=(A¯(r¯))ΔA¯(r¯)A¯(r¯)=μ04πR3d3r´j¯(r¯´)|r¯r¯´|=μ04πR3d3r´r(j¯(r¯´)|r¯r¯´|)=μ04πR3d3r´j¯(r¯´)r1|r¯r¯´|r1|r¯r¯´|=r´1|r¯r¯´|A¯(r¯)=μ04πR3d3r´[r´(j¯(r¯´)|r¯r¯´|)+1|r¯r¯´|r´j¯(r¯´)]r´j¯(r¯´)=tρ=0A¯(r¯)=μ04πR3d3r´r´(j¯(r¯´)|r¯r¯´|)

Wobei die verwendete Kontinuitätsgleichung natürlich nur für statische Ladungsverteilungen gilt!

Im Allgemeinen Fall gilt dagegen:

A¯(r¯)=μ04πR3d3r´r´(j¯(r¯´)|r¯r¯´|)tμ04πR3d3r´ρ(r¯´,t)|r¯r¯´|μ04πR3d3r´ρ(r¯´,t)|r¯r¯´|=μ0ε0Φ(r¯,t)A¯(r¯)=μ04πSd3f¯´(j¯(r¯´)|r¯r¯´|)μ0ε0tΦ(r¯,t)

Mit dem Gaußschen Satz. Wenn das Potenzial jedoch ins unendliche hinreichend rasch abfällt, so gilt:

Sd3f¯´(j¯(r¯´)|r¯r¯´|)=0

Also:

A¯(r¯)=μ0ε0tΦ(r¯,t)

Also:

(A¯(r¯))=μ0ε0tE¯(r¯,t)

Auf der anderen Seite ergibt sich ganz einfach

ΔA¯(r¯)=μ04πR3d3r´Δr(j¯(r¯´)|r¯r¯´|)=μ04πR3d3r´j¯(r¯´)Δr(1|r¯r¯´|)=μ04πR3d3r´j¯(r¯´)δ(r¯r¯´)=μ0j¯(r¯) wegen Δr(1|r¯r¯´|)=4πδ(r¯r¯´)

Also:

×B¯(r¯)=(A¯(r¯))ΔA¯(r¯)=μ0j¯(r¯)+μ0ε0tE¯(r¯,t)

Für stationäre Ströme, die gerade bei stationären Ladungsverteilungen vorliegen, folgt:

×B¯(r¯)=μ0j¯(r¯)μ0ε0tE¯(r¯,t)=0

Dies ist die differenzielle Form des Ampereschen Gesetzes.

Die Ströme sind die Wirbel der magnetischen Induktion!!

Integration über eine Fläche F mit Rand F liefert die Intgralform:

df¯×B¯(r¯)=Fds¯B¯(r¯)=df¯μ0j¯(r¯)=μ0IFds¯B¯(r¯)=μ0I

Mit dem Satz von Stokes Das sogenannte Durchflutungsgesetz!

Zusammenfassung

Magnetostatik

divB¯=0B¯=rotA¯ (quellenfreiheit)
rotB¯=μ0j¯(r¯)Fds¯B¯=μ0IΔA¯=μ0j¯(r¯)

Gilt jedoch nur im Falle der Coulomb-Eichung:

A¯=0

Dies geschieht durch die Umeichung

A¯´(r¯)A¯+Ψ×A¯´(r¯)×A¯+×Ψ×Ψ=0×A¯´(r¯)×A¯×(×A¯´(r¯))=×B¯(r¯)=μ0j¯×(×A¯´(r¯))=(A¯´(r¯))ΔA¯´(r¯)

Elektrostatik

rotE¯=0E¯=Φ (Wirbelfreiheit)
ε0E¯=ρε0Vdf¯E¯=Q

differenzielle Form / integrale Form

ΔΦ=1ε0ρ(r¯) (Poissongleichung)