Magnetische Multipole: Unterschied zwischen den Versionen
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude> ( stationär) Ausgangspunkt ist <math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{…“ |
Keine Bearbeitungszusammenfassung |
||
(4 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
<noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude> | <noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude> | ||
== (stationär)== | |||
Ausgangspunkt ist | |||
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math> | |||
(mit der Coulomb- Eichung <math>\nabla \cdot \bar{A}(\bar{r})=0</math>) | |||
mit den Randbedingungen | mit den Randbedingungen | ||
<math>\bar{A}(\bar{r})\to 0</math> | :<math>\bar{A}(\bar{r})\to 0</math> für r→ unendlich | ||
für | |||
Taylorentwicklung nach | Taylorentwicklung nach | ||
<math>\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math> | :<math>\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math> | ||
von analog zum elektrischen Fall: | von analog zum elektrischen Fall: | ||
<math> | Die Stromverteilung <math>\bar{j}(\bar{r}\acute{\ })</math> sei stationär für <math>r>>r\acute{\ }</math> | ||
<math>\ | :<math>\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{1}{r}+\frac{1}{{{r}^{3}}}\left( \bar{r}\cdot \bar{r}\acute{\ } \right)+...</math> | ||
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi r}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })+\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)+...</math> | |||
===Monopol- Term=== | |||
'''Mit''' | '''Mit''' | ||
<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{x}_{k}}\acute{\ }\left( {{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ }) \right)+\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)</math> | :<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{x}_{k}}\acute{\ }\left( {{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ }) \right)+\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)</math> | ||
Im stationären Fall folgt aus der Kontinuitätsgleichung: | Im stationären Fall folgt aus der {{FB|Kontinuitätsgleichung}}: | ||
<math>{{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ })=0</math> | :<math>{{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ })=0</math> | ||
<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)={{j}_{l}}{{\delta }_{kl}}={{j}_{k}}</math> | :<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)={{j}_{l}}{{\delta }_{kl}}={{j}_{k}}</math> | ||
Mit | Mit <math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{j}_{k}}</math> folgt dann: | ||
<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{j}_{k}}</math> | |||
folgt dann: | |||
<math>\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{j}_{k}}(\bar{r}\acute{\ })=\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math> | :<math>\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{j}_{k}}(\bar{r}\acute{\ })=\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math> | ||
Somit verschwindet der Monopolterm in der Theorie | <u>Somit verschwindet der Monopolterm in der Theorie.</u> | ||
=== Dipol- Term === | |||
<math>\left[ \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right]\times \bar{r}=\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ }=2\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> | mit <math>\left[ \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right]\times \bar{r}=\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ }=2\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> und mit | ||
:<math>\begin{align} | |||
<math>\begin{align} | |||
& {{\nabla }_{r\acute{\ }}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=\left[ \left( \bar{r}\bar{r}\acute{\ } \right){{j}_{k}}+{{x}_{k}}\acute{\ }\left( \bar{r}\bar{j} \right)+{{x}_{k\acute{\ }}}\left( \bar{r}\bar{r}\acute{\ } \right){{\nabla }_{r\acute{\ }}}\cdot \bar{j} \right] \\ | & {{\nabla }_{r\acute{\ }}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=\left[ \left( \bar{r}\bar{r}\acute{\ } \right){{j}_{k}}+{{x}_{k}}\acute{\ }\left( \bar{r}\bar{j} \right)+{{x}_{k\acute{\ }}}\left( \bar{r}\bar{r}\acute{\ } \right){{\nabla }_{r\acute{\ }}}\cdot \bar{j} \right] \\ | ||
& {{\nabla }_{r\acute{\ }}}\cdot \bar{j}=0 \\ | & {{\nabla }_{r\acute{\ }}}\cdot \bar{j}=0 \\ | ||
Zeile 61: | Zeile 51: | ||
Folgt: | Folgt: | ||
<math>\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left[ \left( \bar{r}\bar{r}\acute{\ } \right){{j}_{k}}+{{x}_{k}}\acute{\ }\left( \bar{r}\bar{j} \right) \right]=0</math> | :<math>\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left[ \left( \bar{r}\bar{r}\acute{\ } \right){{j}_{k}}+{{x}_{k}}\acute{\ }\left( \bar{r}\bar{j} \right) \right]=0</math> | ||
Da | Da | ||
<math>\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=0</math> | :<math>\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=0</math> | ||
weil der Strom verschwindet ! | weil der Strom verschwindet! | ||
Somit gibt der Term | Somit gibt der Term | ||
<math>\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> | :<math>\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> | ||
keinen Beitrag zum | '''keinen Beitrag zum''' | ||
<math>\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)</math> | :<math>\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)</math> | ||
Also: | Also: | ||
<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)\times \bar{r}</math> | :<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)\times \bar{r}</math> | ||
Als | Als {{FB|Dipolpotenzial}}!! | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \bar{A}(\bar{r}):=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\bar{m}\times \bar{r} \\ | & \bar{A}(\bar{r}):=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\bar{m}\times \bar{r} \\ | ||
& \bar{m}=\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right) \\ | & \bar{m}=\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right) \\ | ||
\end{align}</math> | \end{align}</math> | ||
das magnetische Dipolmoment ! | das magnetische Dipolmoment! | ||
Analog zu | Analog zu | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \Phi (\bar{r}):=\frac{1}{4\pi {{\varepsilon }_{0}}{{r}^{3}}}\bar{p}\cdot \bar{r} \\ | & \Phi (\bar{r}):=\frac{1}{4\pi {{\varepsilon }_{0}}{{r}^{3}}}\bar{p}\cdot \bar{r} \\ | ||
& \bar{p}:=\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{r}\acute{\ }\rho (\bar{r}\acute{\ }) \\ | & \bar{p}:=\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{r}\acute{\ }\rho (\bar{r}\acute{\ }) \\ | ||
Zeile 99: | Zeile 89: | ||
Die magnetische Induktion des Dipolmomentes ergibt sich als: | Die magnetische Induktion des Dipolmomentes ergibt sich als: | ||
<math>\bar{B}(\bar{r}):=\nabla \times \frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\bar{m}\times \bar{r}=\frac{{{\mu }_{0}}}{4\pi {{r}^{5}}}\left[ 3\left( \bar{m}\cdot \bar{r} \right)\bar{r}-{{r}^{2}}\bar{m} \right]</math> | :<math>\bar{B}(\bar{r}):=\nabla \times \frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\bar{m}\times \bar{r}=\frac{{{\mu }_{0}}}{4\pi {{r}^{5}}}\left[ 3\left( \bar{m}\cdot \bar{r} \right)\bar{r}-{{r}^{2}}\bar{m} \right]</math> | ||
Wegen: | Wegen: | ||
<math>\nabla \times \left( \bar{a}\times \bar{b} \right)=\left( \bar{b}\cdot \nabla \right)\bar{a}-\left( \bar{a}\cdot \nabla \right)\bar{b}+\bar{a}\left( \nabla \cdot \bar{b} \right)-\bar{b}\left( \nabla \cdot \bar{a} \right)</math> | :<math>\nabla \times \left( \bar{a}\times \bar{b} \right)=\left( \bar{b}\cdot \nabla \right)\bar{a}-\left( \bar{a}\cdot \nabla \right)\bar{b}+\bar{a}\left( \nabla \cdot \bar{b} \right)-\bar{b}\left( \nabla \cdot \bar{a} \right)</math> mit <math>\begin{align} | ||
mit | |||
<math>\begin{align} | |||
& \bar{a}=\frac{{\bar{m}}}{{{r}^{3}}} \\ | & \bar{a}=\frac{{\bar{m}}}{{{r}^{3}}} \\ | ||
& \bar{b}=\bar{r} \\ | & \bar{b}=\bar{r} \\ | ||
Zeile 118: | Zeile 104: | ||
Analog ergab sich als elektrisches Dipolfeld: | Analog ergab sich als elektrisches Dipolfeld: | ||
<math>\bar{E}(\bar{r}):=\frac{1}{4\pi {{\varepsilon }_{0}}{{r}^{5}}}\left[ 3\left( \bar{p}\cdot \bar{r} \right)-{{r}^{2}}\bar{p} \right]</math> | :<math>\bar{E}(\bar{r}):=\frac{1}{4\pi {{\varepsilon }_{0}}{{r}^{5}}}\left[ 3\left( \bar{p}\cdot \bar{r} \right)-{{r}^{2}}\bar{p} \right]</math> | ||
{{Beispiel|1= | |||
Beispiel: Ebene Leiterschleife L: | |||
<math>\begin{align} | :<math>\begin{align} | ||
& d\bar{f}\acute{\ }=\frac{1}{2}\bar{r}\acute{\ }\times d\bar{s}\acute{\ } \\ | & d\bar{f}\acute{\ }=\frac{1}{2}\bar{r}\acute{\ }\times d\bar{s}\acute{\ } \\ | ||
& {{d}^{3}}\bar{r}\acute{\ }j(\bar{r}\acute{\ })=d\bar{s}\acute{\ }I \\ | & {{d}^{3}}\bar{r}\acute{\ }j(\bar{r}\acute{\ })=d\bar{s}\acute{\ }I \\ | ||
Zeile 131: | Zeile 117: | ||
Mit I = Strom durch den Leiter | Mit I = Strom durch den Leiter | ||
<math>\Rightarrow \bar{m}=\frac{1}{2}\oint\limits_{L}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)=\frac{I}{2}\oint\limits_{L}{{}}\bar{r}\acute{\ }\times d\bar{s}\acute{\ }=I\int_{F}^{{}}{{}}d\bar{f}\acute{\ }=IF\bar{n}</math> | :<math>\Rightarrow \bar{m}=\frac{1}{2}\oint\limits_{L}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)=\frac{I}{2}\oint\limits_{L}{{}}\bar{r}\acute{\ }\times d\bar{s}\acute{\ }=I\int_{F}^{{}}{{}}d\bar{f}\acute{\ }=IF\bar{n}</math> | ||
Dabei ist | Dabei ist | ||
<math>\bar{n}</math> | :<math>\bar{n}</math> | ||
die Normale auf der von L eingeschlossenen Fläche F | die Normale auf der von L eingeschlossenen Fläche F | ||
Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment | Also: Ein Ringstrom bedingt ein {{FB|magnetisches Dipolmoment}} <math>\bar{m}</math> }} | ||
<math>\bar{m}</math> | |||
analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment | |||
:<math>\bar{p}=q\bar{a}</math>, | |||
welches von der positiven zur negativen Ladung zeigt. | |||
=== Bewegte Ladungen === | |||
N Teilchen mit den Massen m<sub>i</sub> und den Ladungen q<sub>i</sub> bewegen sich. | |||
<math>\frac{{{q}_{i}}}{{{m}_{i}}}=\frac{q}{m}</math> | Dabei sei die spezifische Ladung <math>\frac{{{q}_{i}}}{{{m}_{i}}}=\frac{q}{m}</math> konstant: | ||
konstant: | |||
<math>\begin{align} | :<math>\begin{align} | ||
& \rho (\bar{r})=\sum\limits_{i}{{}}{{q}_{i}}\delta \left( \bar{r}-{{{\bar{r}}}_{i}} \right) \\ | & \rho (\bar{r})=\sum\limits_{i}{{}}{{q}_{i}}\delta \left( \bar{r}-{{{\bar{r}}}_{i}} \right) \\ | ||
& \bar{j}(\bar{r})=\sum\limits_{i}{{}}{{q}_{i}}{{{\bar{v}}}_{i}}\delta \left( \bar{r}-{{{\bar{r}}}_{i}} \right) \\ | & \bar{j}(\bar{r})=\sum\limits_{i}{{}}{{q}_{i}}{{{\bar{v}}}_{i}}\delta \left( \bar{r}-{{{\bar{r}}}_{i}} \right) \\ | ||
Zeile 160: | Zeile 143: | ||
\end{align}</math> | \end{align}</math> | ||
Das magnetische Dipolmoment beträgt: | Das {{FB|magnetische Dipolmoment}} beträgt: | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \bar{m}=\frac{1}{2}\oint\limits_{L}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)=\frac{1}{2}\sum\limits_{i}{{}}{{q}_{i}}\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{r}\acute{\ }\times {{{\bar{v}}}_{i}}\delta \left( \bar{r}\acute{\ }-{{{\bar{r}}}_{i}} \right)=\frac{1}{2}\sum\limits_{i}{{}}{{q}_{i}}{{{\bar{r}}}_{i}}\times {{{\bar{v}}}_{i}}=\frac{1}{2}\sum\limits_{i}{{}}\frac{{{q}_{i}}}{{{m}_{i}}}{{m}_{i}}{{{\bar{r}}}_{i}}\times {{{\bar{v}}}_{i}} \\ | & \bar{m}=\frac{1}{2}\oint\limits_{L}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)=\frac{1}{2}\sum\limits_{i}{{}}{{q}_{i}}\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{r}\acute{\ }\times {{{\bar{v}}}_{i}}\delta \left( \bar{r}\acute{\ }-{{{\bar{r}}}_{i}} \right)=\frac{1}{2}\sum\limits_{i}{{}}{{q}_{i}}{{{\bar{r}}}_{i}}\times {{{\bar{v}}}_{i}}=\frac{1}{2}\sum\limits_{i}{{}}\frac{{{q}_{i}}}{{{m}_{i}}}{{m}_{i}}{{{\bar{r}}}_{i}}\times {{{\bar{v}}}_{i}} \\ | ||
& \frac{{{q}_{i}}}{{{m}_{i}}}=\frac{q}{m} \\ | & \frac{{{q}_{i}}}{{{m}_{i}}}=\frac{q}{m} \\ | ||
Zeile 168: | Zeile 151: | ||
\end{align}</math> | \end{align}</math> | ||
Mit dem Bahndrehimpuls | Mit dem {{FB|Bahndrehimpuls}} <math>\bar{L}</math>: | ||
<math>\bar{L}</math> | |||
: | |||
<math>\bar{m}=\frac{q}{2m}\bar{L}</math> | :<math>\bar{m}=\frac{q}{2m}\bar{L}</math> | ||
gilt aber auch für starre Körper ! | gilt aber auch für starre Körper! | ||
* Allgemeines Gesetz ! | * Allgemeines Gesetz! | ||
Jedoch gilt dies nicht für den Spin eines Elektrons !!! | Jedoch gilt dies nicht für den Spin eines Elektrons!!! | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \bar{m}=g\frac{e}{2m}\bar{S} \\ | & \bar{m}=g\frac{e}{2m}\bar{S} \\ | ||
& g\approx 2 \\ | & g\approx 2 \\ | ||
\end{align}</math> | \end{align}</math> | ||
Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen ! | Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen! | ||
==== Kraft auf eine Stromverteilung ==== | |||
<math>\bar{j}(\bar{r}\acute{\ })={{\rho }_{i}}(\bar{r}\acute{\ })\bar{v}(\bar{r}\acute{\ })</math> | :<math>\bar{j}(\bar{r}\acute{\ })={{\rho }_{i}}(\bar{r}\acute{\ })\bar{v}(\bar{r}\acute{\ })</math> | ||
im Feld einer externen magnetischen Induktion | im Feld einer externen {{FB|magnetischen Induktion}} <math>\bar{B}(\bar{r}\acute{\ })</math>: | ||
<math>\bar{B}(\bar{r}\acute{\ })</math> | |||
: | |||
Spürt die Lorentzkraft | Spürt die {{FB|Lorentzkraft}} | ||
<math>\bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \bar{B}(\bar{r}\acute{\ })</math> | :<math>\bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \bar{B}(\bar{r}\acute{\ })</math> | ||
Talyorentwicklung liefert: | Talyorentwicklung liefert: | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \bar{B}(\bar{r}\acute{\ })=\bar{B}(\bar{r})+\left[ \left( \bar{r}\acute{\ }-\bar{r} \right)\nabla \right]\bar{B}(\bar{r})+.... \\ | & \bar{B}(\bar{r}\acute{\ })=\bar{B}(\bar{r})+\left[ \left( \bar{r}\acute{\ }-\bar{r} \right)\nabla \right]\bar{B}(\bar{r})+.... \\ | ||
& \Rightarrow \bar{F}=\left[ \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]\times \bar{B}(\bar{r}\acute{\ })+\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( \bar{r}\acute{\ }-\bar{r} \right)\nabla \right]\bar{B}(\bar{r})+... \\ | & \Rightarrow \bar{F}=\left[ \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]\times \bar{B}(\bar{r}\acute{\ })+\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( \bar{r}\acute{\ }-\bar{r} \right)\nabla \right]\bar{B}(\bar{r})+... \\ | ||
Zeile 206: | Zeile 185: | ||
im stationären Fall gilt wieder: | im stationären Fall gilt wieder: | ||
<math>\left[ \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math> | :<math>\left[ \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math> (keine Monopole) | ||
( keine Monopole) | |||
Also: | Also: | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( \bar{r}\acute{\ } \right){{\nabla }_{r}} \right]\bar{B}(\bar{r})-\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( {\bar{r}} \right){{\nabla }_{r}} \right]\bar{B}(\bar{r}) \\ | & \bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( \bar{r}\acute{\ } \right){{\nabla }_{r}} \right]\bar{B}(\bar{r})-\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( {\bar{r}} \right){{\nabla }_{r}} \right]\bar{B}(\bar{r}) \\ | ||
& \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( {\bar{r}} \right){{\nabla }_{r}} \right]\bar{B}(\bar{r})=0,da\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })=0 \\ | & \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( {\bar{r}} \right){{\nabla }_{r}} \right]\bar{B}(\bar{r})=0,da\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })=0 \\ | ||
Zeile 219: | Zeile 197: | ||
Man fordert: | Man fordert: | ||
<math>\left[ {{\nabla }_{r}}\times \bar{B}(\bar{r}) \right]=0</math> | :<math>\left[ {{\nabla }_{r}}\times \bar{B}(\bar{r}) \right]=0</math> | ||
( Das externe Feld soll keine Stromwirbel im Bereich von | (Das externe Feld soll keine Stromwirbel im Bereich von <math>\bar{j}(\bar{r}\acute{\ })</math> haben: | ||
<math>\bar{j}(\bar{r}\acute{\ })</math> | |||
haben: | |||
<math>\begin{align} | :<math>\begin{align} | ||
& \bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times {{\nabla }_{r}}\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right] \\ | & \bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times {{\nabla }_{r}}\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right] \\ | ||
& \bar{j}(\bar{r}\acute{\ })\times {{\nabla }_{r}}\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right]=-{{\nabla }_{r}}\times \left[ \left( \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right)\bar{j}(\bar{r}\acute{\ }) \right]+\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right]{{\nabla }_{r}}\times \bar{j}(\bar{r}\acute{\ }) \\ | & \bar{j}(\bar{r}\acute{\ })\times {{\nabla }_{r}}\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right]=-{{\nabla }_{r}}\times \left[ \left( \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right)\bar{j}(\bar{r}\acute{\ }) \right]+\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right]{{\nabla }_{r}}\times \bar{j}(\bar{r}\acute{\ }) \\ | ||
Zeile 233: | Zeile 209: | ||
\end{align}</math> | \end{align}</math> | ||
( Vergl. S. 34) | (Vergl. S. 34) |
Aktuelle Version vom 16. September 2010, 11:18 Uhr
Der Artikel Magnetische Multipole basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 2.Kapitels (Abschnitt 4) der Elektrodynamikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
(stationär)
Ausgangspunkt ist
mit den Randbedingungen
Taylorentwicklung nach
von analog zum elektrischen Fall:
Die Stromverteilung sei stationär für
Monopol- Term
Mit
Im stationären Fall folgt aus der Kontinuitätsgleichung:
Somit verschwindet der Monopolterm in der Theorie.
Dipol- Term
Folgt:
Da
weil der Strom verschwindet! Somit gibt der Term
keinen Beitrag zum
Also:
Als Dipolpotenzial!!
das magnetische Dipolmoment!
Analog zu
dem elektrischen Dipolmoment
Die magnetische Induktion des Dipolmomentes ergibt sich als:
Wegen:
Analog ergab sich als elektrisches Dipolfeld:
Beispiel: Ebene Leiterschleife L:
Mit I = Strom durch den Leiter Dabei ist die Normale auf der von L eingeschlossenen Fläche F Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment |
analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment
welches von der positiven zur negativen Ladung zeigt.
Bewegte Ladungen
N Teilchen mit den Massen mi und den Ladungen qi bewegen sich.
Dabei sei die spezifische Ladung konstant:
Das magnetische Dipolmoment beträgt:
Mit dem Bahndrehimpuls :
gilt aber auch für starre Körper!
- Allgemeines Gesetz!
Jedoch gilt dies nicht für den Spin eines Elektrons!!!
Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen!
Kraft auf eine Stromverteilung
im Feld einer externen magnetischen Induktion :
Spürt die Lorentzkraft
Talyorentwicklung liefert:
im stationären Fall gilt wieder:
Also:
Man fordert:
(Das externe Feld soll keine Stromwirbel im Bereich von haben:
(Vergl. S. 34)