Magnetische Multipole: Unterschied zwischen den Versionen
*>SchuBot K Interpunktion, replaced: ! → ! (7), ( → ( (4) |
Keine Bearbeitungszusammenfassung |
||
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
<noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude> | <noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude> | ||
== (stationär)== | |||
Ausgangspunkt ist | Ausgangspunkt ist | ||
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math> | :<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math> | ||
(mit der Coulomb- Eichung | (mit der Coulomb- Eichung <math>\nabla \cdot \bar{A}(\bar{r})=0</math>) | ||
mit den Randbedingungen | mit den Randbedingungen | ||
:<math>\bar{A}(\bar{r})\to 0</math> | :<math>\bar{A}(\bar{r})\to 0</math> für r→ unendlich | ||
für r→ unendlich | |||
Taylorentwicklung nach | Taylorentwicklung nach | ||
:<math>\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math> | :<math>\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math> | ||
von analog zum elektrischen Fall: | von analog zum elektrischen Fall: | ||
Die Stromverteilung | |||
Die Stromverteilung <math>\bar{j}(\bar{r}\acute{\ })</math> sei stationär für <math>r>>r\acute{\ }</math> | |||
sei stationär für | |||
:<math>\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{1}{r}+\frac{1}{{{r}^{3}}}\left( \bar{r}\cdot \bar{r}\acute{\ } \right)+...</math> | :<math>\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{1}{r}+\frac{1}{{{r}^{3}}}\left( \bar{r}\cdot \bar{r}\acute{\ } \right)+...</math> | ||
Zeile 25: | Zeile 20: | ||
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi r}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })+\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)+...</math> | :<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi r}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })+\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)+...</math> | ||
===Monopol- Term=== | |||
'''Mit''' | '''Mit''' | ||
Zeile 31: | Zeile 26: | ||
:<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{x}_{k}}\acute{\ }\left( {{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ }) \right)+\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)</math> | :<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{x}_{k}}\acute{\ }\left( {{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ }) \right)+\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)</math> | ||
Im stationären Fall folgt aus der Kontinuitätsgleichung: | Im stationären Fall folgt aus der {{FB|Kontinuitätsgleichung}}: | ||
:<math>{{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ })=0</math> | :<math>{{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ })=0</math> | ||
Zeile 37: | Zeile 32: | ||
:<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)={{j}_{l}}{{\delta }_{kl}}={{j}_{k}}</math> | :<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)={{j}_{l}}{{\delta }_{kl}}={{j}_{k}}</math> | ||
Mit | Mit <math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{j}_{k}}</math> folgt dann: | ||
folgt dann: | |||
:<math>\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{j}_{k}}(\bar{r}\acute{\ })=\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math> | :<math>\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{j}_{k}}(\bar{r}\acute{\ })=\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math> | ||
Somit verschwindet der Monopolterm in der Theorie | <u>Somit verschwindet der Monopolterm in der Theorie.</u> | ||
=== Dipol- Term === | |||
und mit | mit <math>\left[ \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right]\times \bar{r}=\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ }=2\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> und mit | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Zeile 71: | Zeile 61: | ||
:<math>\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> | :<math>\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> | ||
keinen Beitrag zum | '''keinen Beitrag zum''' | ||
:<math>\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)</math> | :<math>\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)</math> | ||
Zeile 79: | Zeile 69: | ||
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)\times \bar{r}</math> | :<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)\times \bar{r}</math> | ||
Als | Als {{FB|Dipolpotenzial}}!! | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Zeile 115: | Zeile 105: | ||
:<math>\bar{E}(\bar{r}):=\frac{1}{4\pi {{\varepsilon }_{0}}{{r}^{5}}}\left[ 3\left( \bar{p}\cdot \bar{r} \right)-{{r}^{2}}\bar{p} \right]</math> | :<math>\bar{E}(\bar{r}):=\frac{1}{4\pi {{\varepsilon }_{0}}{{r}^{5}}}\left[ 3\left( \bar{p}\cdot \bar{r} \right)-{{r}^{2}}\bar{p} \right]</math> | ||
{{Beispiel|1= | |||
Beispiel: Ebene Leiterschleife L: | |||
Zeile 134: | Zeile 124: | ||
die Normale auf der von L eingeschlossenen Fläche F | die Normale auf der von L eingeschlossenen Fläche F | ||
Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment | Also: Ein Ringstrom bedingt ein {{FB|magnetisches Dipolmoment}} <math>\bar{m}</math> }} | ||
analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment | analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment | ||
Zeile 142: | Zeile 130: | ||
welches von der positiven zur negativen Ladung zeigt. | welches von der positiven zur negativen Ladung zeigt. | ||
=== Bewegte Ladungen === | |||
N Teilchen mit den Massen m<sub>i</sub> und den Ladungen q<sub>i</sub> bewegen sich. | |||
Dabei sei die spezifische Ladung <math>\frac{{{q}_{i}}}{{{m}_{i}}}=\frac{q}{m}</math> konstant: | |||
konstant: | |||
:<math>\begin{align} | :<math>\begin{align} | ||
Zeile 156: | Zeile 143: | ||
\end{align}</math> | \end{align}</math> | ||
Das magnetische Dipolmoment beträgt: | Das {{FB|magnetische Dipolmoment}} beträgt: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Zeile 164: | Zeile 151: | ||
\end{align}</math> | \end{align}</math> | ||
Mit dem Bahndrehimpuls | Mit dem {{FB|Bahndrehimpuls}} <math>\bar{L}</math>: | ||
: | |||
:<math>\bar{m}=\frac{q}{2m}\bar{L}</math> | :<math>\bar{m}=\frac{q}{2m}\bar{L}</math> | ||
Zeile 181: | Zeile 166: | ||
Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen! | Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen! | ||
==== Kraft auf eine Stromverteilung ==== | |||
:<math>\bar{j}(\bar{r}\acute{\ })={{\rho }_{i}}(\bar{r}\acute{\ })\bar{v}(\bar{r}\acute{\ })</math> | :<math>\bar{j}(\bar{r}\acute{\ })={{\rho }_{i}}(\bar{r}\acute{\ })\bar{v}(\bar{r}\acute{\ })</math> | ||
im Feld einer externen magnetischen Induktion | im Feld einer externen {{FB|magnetischen Induktion}} <math>\bar{B}(\bar{r}\acute{\ })</math>: | ||
: | |||
Spürt die Lorentzkraft | Spürt die {{FB|Lorentzkraft}} | ||
:<math>\bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \bar{B}(\bar{r}\acute{\ })</math> | :<math>\bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \bar{B}(\bar{r}\acute{\ })</math> | ||
Zeile 202: | Zeile 185: | ||
im stationären Fall gilt wieder: | im stationären Fall gilt wieder: | ||
:<math>\left[ \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math> | :<math>\left[ \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math> (keine Monopole) | ||
(keine Monopole) | |||
Also: | Also: | ||
Zeile 217: | Zeile 199: | ||
:<math>\left[ {{\nabla }_{r}}\times \bar{B}(\bar{r}) \right]=0</math> | :<math>\left[ {{\nabla }_{r}}\times \bar{B}(\bar{r}) \right]=0</math> | ||
(Das externe Feld soll keine Stromwirbel im Bereich von | (Das externe Feld soll keine Stromwirbel im Bereich von <math>\bar{j}(\bar{r}\acute{\ })</math> haben: | ||
haben: | |||
:<math>\begin{align} | :<math>\begin{align} |
Aktuelle Version vom 16. September 2010, 11:18 Uhr
Der Artikel Magnetische Multipole basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 2.Kapitels (Abschnitt 4) der Elektrodynamikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
(stationär)
Ausgangspunkt ist
mit den Randbedingungen
Taylorentwicklung nach
von analog zum elektrischen Fall:
Die Stromverteilung sei stationär für
Monopol- Term
Mit
Im stationären Fall folgt aus der Kontinuitätsgleichung:
Somit verschwindet der Monopolterm in der Theorie.
Dipol- Term
Folgt:
Da
weil der Strom verschwindet! Somit gibt der Term
keinen Beitrag zum
Also:
Als Dipolpotenzial!!
das magnetische Dipolmoment!
Analog zu
dem elektrischen Dipolmoment
Die magnetische Induktion des Dipolmomentes ergibt sich als:
Wegen:
Analog ergab sich als elektrisches Dipolfeld:
Beispiel: Ebene Leiterschleife L:
Mit I = Strom durch den Leiter Dabei ist die Normale auf der von L eingeschlossenen Fläche F Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment |
analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment
welches von der positiven zur negativen Ladung zeigt.
Bewegte Ladungen
N Teilchen mit den Massen mi und den Ladungen qi bewegen sich.
Dabei sei die spezifische Ladung konstant:
Das magnetische Dipolmoment beträgt:
Mit dem Bahndrehimpuls :
gilt aber auch für starre Körper!
- Allgemeines Gesetz!
Jedoch gilt dies nicht für den Spin eines Elektrons!!!
Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen!
Kraft auf eine Stromverteilung
im Feld einer externen magnetischen Induktion :
Spürt die Lorentzkraft
Talyorentwicklung liefert:
im stationären Fall gilt wieder:
Also:
Man fordert:
(Das externe Feld soll keine Stromwirbel im Bereich von haben:
(Vergl. S. 34)