Magnetische Multipole: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
<noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude> | <noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude> | ||
== (stationär)== | |||
Ausgangspunkt ist | Ausgangspunkt ist | ||
Zeile 21: | Zeile 20: | ||
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi r}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })+\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)+...</math> | :<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi r}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })+\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)+...</math> | ||
===Monopol- Term=== | |||
'''Mit''' | '''Mit''' | ||
Zeile 27: | Zeile 26: | ||
:<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{x}_{k}}\acute{\ }\left( {{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ }) \right)+\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)</math> | :<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{x}_{k}}\acute{\ }\left( {{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ }) \right)+\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)</math> | ||
Im stationären Fall folgt aus der Kontinuitätsgleichung: | Im stationären Fall folgt aus der {{FB|Kontinuitätsgleichung}}: | ||
:<math>{{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ })=0</math> | :<math>{{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ })=0</math> | ||
Zeile 33: | Zeile 32: | ||
:<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)={{j}_{l}}{{\delta }_{kl}}={{j}_{k}}</math> | :<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)={{j}_{l}}{{\delta }_{kl}}={{j}_{k}}</math> | ||
Mit | Mit <math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{j}_{k}}</math> folgt dann: | ||
folgt dann: | |||
:<math>\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{j}_{k}}(\bar{r}\acute{\ })=\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math> | :<math>\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{j}_{k}}(\bar{r}\acute{\ })=\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math> | ||
Somit verschwindet der Monopolterm in der Theorie | <u>Somit verschwindet der Monopolterm in der Theorie.</u> | ||
=== Dipol- Term === | |||
und mit | mit <math>\left[ \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right]\times \bar{r}=\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ }=2\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> und mit | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Zeile 67: | Zeile 61: | ||
:<math>\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> | :<math>\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> | ||
keinen Beitrag zum | '''keinen Beitrag zum''' | ||
:<math>\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)</math> | :<math>\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)</math> | ||
Zeile 75: | Zeile 69: | ||
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)\times \bar{r}</math> | :<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)\times \bar{r}</math> | ||
Als | Als {{FB|Dipolpotenzial}}!! | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Zeile 111: | Zeile 105: | ||
:<math>\bar{E}(\bar{r}):=\frac{1}{4\pi {{\varepsilon }_{0}}{{r}^{5}}}\left[ 3\left( \bar{p}\cdot \bar{r} \right)-{{r}^{2}}\bar{p} \right]</math> | :<math>\bar{E}(\bar{r}):=\frac{1}{4\pi {{\varepsilon }_{0}}{{r}^{5}}}\left[ 3\left( \bar{p}\cdot \bar{r} \right)-{{r}^{2}}\bar{p} \right]</math> | ||
{{Beispiel| | {{Beispiel|1= | ||
Beispiel: Ebene Leiterschleife L: | |||
Zeile 130: | Zeile 124: | ||
die Normale auf der von L eingeschlossenen Fläche F | die Normale auf der von L eingeschlossenen Fläche F | ||
Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment | Also: Ein Ringstrom bedingt ein {{FB|magnetisches Dipolmoment}} <math>\bar{m}</math> }} | ||
}} | |||
analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment | analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment | ||
Zeile 139: | Zeile 131: | ||
== Bewegte Ladungen == | === Bewegte Ladungen === | ||
N Teilchen mit den Massen m<sub>i</sub> und den Ladungen q<sub>i</sub> bewegen sich. | N Teilchen mit den Massen m<sub>i</sub> und den Ladungen q<sub>i</sub> bewegen sich. | ||
Zeile 174: | Zeile 166: | ||
Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen! | Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen! | ||
===Kraft auf eine Stromverteilung=== | ==== Kraft auf eine Stromverteilung ==== | ||
:<math>\bar{j}(\bar{r}\acute{\ })={{\rho }_{i}}(\bar{r}\acute{\ })\bar{v}(\bar{r}\acute{\ })</math> | :<math>\bar{j}(\bar{r}\acute{\ })={{\rho }_{i}}(\bar{r}\acute{\ })\bar{v}(\bar{r}\acute{\ })</math> |
Aktuelle Version vom 16. September 2010, 11:18 Uhr
Der Artikel Magnetische Multipole basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 2.Kapitels (Abschnitt 4) der Elektrodynamikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
(stationär)
Ausgangspunkt ist
mit den Randbedingungen
Taylorentwicklung nach
von analog zum elektrischen Fall:
Die Stromverteilung sei stationär für
Monopol- Term
Mit
Im stationären Fall folgt aus der Kontinuitätsgleichung:
Somit verschwindet der Monopolterm in der Theorie.
Dipol- Term
Folgt:
Da
weil der Strom verschwindet! Somit gibt der Term
keinen Beitrag zum
Also:
Als Dipolpotenzial!!
das magnetische Dipolmoment!
Analog zu
dem elektrischen Dipolmoment
Die magnetische Induktion des Dipolmomentes ergibt sich als:
Wegen:
Analog ergab sich als elektrisches Dipolfeld:
Beispiel: Ebene Leiterschleife L:
Mit I = Strom durch den Leiter Dabei ist die Normale auf der von L eingeschlossenen Fläche F Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment |
analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment
welches von der positiven zur negativen Ladung zeigt.
Bewegte Ladungen
N Teilchen mit den Massen mi und den Ladungen qi bewegen sich.
Dabei sei die spezifische Ladung konstant:
Das magnetische Dipolmoment beträgt:
Mit dem Bahndrehimpuls :
gilt aber auch für starre Körper!
- Allgemeines Gesetz!
Jedoch gilt dies nicht für den Spin eines Elektrons!!!
Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen!
Kraft auf eine Stromverteilung
im Feld einer externen magnetischen Induktion :
Spürt die Lorentzkraft
Talyorentwicklung liefert:
im stationären Fall gilt wieder:
Also:
Man fordert:
(Das externe Feld soll keine Stromwirbel im Bereich von haben:
(Vergl. S. 34)