Klein Gordon im (Vektor)Potential, Eichinvarianz: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
*>SchuBot
Einrückungen Mathematik
 
(3 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
<noinclude>{{ScriptProf|Kapitel=1|Abschnitt=3|Prof=Prof. Dr. T. Brandes|Thema=Quantenmechanik|Schreiber=Moritz Schubotz}}</noinclude>
<noinclude>{{ScriptProf|Kapitel=1|Abschnitt=3|Prof=Prof. Dr. T. Brandes|Thema=Quantenmechanik|Schreiber=Moritz Schubotz}}</noinclude>


===Klein Gordon im (Vektor)Potential, Eichinvarianz===
Die klassische relativistische {{FB|Dispersionsrelation|klassisch}} <math>E=E\left( {\underline{p}} \right)</math> für freie Teilchen der Masse m ohne äußeres Potential lautet:
Die klassische relativistische {{FB|Dispersionsrelation|klassisch}} <math>E=E\left( {\underline{p}} \right)</math> für freie Teilchen der Masse m ohne äußeres Potential lautet:


{{NumBlk|:|
{{NumBlk|:|


<math>{{E}^{2}}={{m}^{2}}{{c}^{4}}+{{p}^{2}}{{c}^{2}}</math>
:<math>{{E}^{2}}={{m}^{2}}{{c}^{4}}+{{p}^{2}}{{c}^{2}}</math>


: |(1.15)|RawN=.}}
: |(1.15)|RawN=.}}
Zeile 13: Zeile 12:
{{NumBlk|:|
{{NumBlk|:|


<math>\begin{align}
:<math>\begin{align}


\text{Magnetfeld}\quad \underline{B}&=\underline{\nabla }\times \underline{A} \\
\text{Magnetfeld}\quad \underline{B}&=\underline{\nabla }\times \underline{A} \\
Zeile 26: Zeile 25:
{{NumBlk|:|
{{NumBlk|:|


<math>\begin{align}
:<math>\begin{align}


& \underline{A}\to \underline{A}+\underline{\nabla }.\chi  \\
& \underline{A}\to \underline{A}+\underline{\nabla }.\chi  \\
Zeile 54: Zeile 53:
{{NumBlk|:|
{{NumBlk|:|


<math>\mathfrak{i} \hbar {{\partial }_{t}}\Psi =\hat{H}\Psi =\left\{ \frac{{{\left( \hat{\underline{p}}-e\underline{A} \right)}^{2}}}{2m}+e\phi  \right\}\Psi </math>
:<math>\mathfrak{i} \hbar {{\partial }_{t}}\Psi =\hat{H}\Psi =\left\{ \frac{{{\left( \hat{\underline{p}}-e\underline{A} \right)}^{2}}}{2m}+e\phi  \right\}\Psi </math>


|(1.19)|RawN=.}}
|(1.19)|RawN=.}}
Zeile 64: Zeile 63:
{{NumBlk|:|
{{NumBlk|:|


<math>\int{{{\Psi }^{*}}\left( \underline{x},t \right)\hat{O}\left( \underline{x},\underline{\nabla },{{\partial }_{t}} \right)\Psi \left( \underline{x},t \right){{d}^{d}}x}=\text{invariant}</math>
:<math>\int{{{\Psi }^{*}}\left( \underline{x},t \right)\hat{O}\left( \underline{x},\underline{\nabla },{{\partial }_{t}} \right)\Psi \left( \underline{x},t \right){{d}^{d}}x}=\text{invariant}</math>


|(1.20)|RawN=.}}
|(1.20)|RawN=.}}
Zeile 71: Zeile 70:
{{NumBlk|:|
{{NumBlk|:|


<math>\Psi \left( \underline{x},t \right)\to \Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}</math>
:<math>\Psi \left( \underline{x},t \right)\to \Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}</math>


: |(1.21)|RawN=.}}
: |(1.21)|RawN=.}}


nichts an der Phase ändern, dass heißt mit Ψ ist auch <math>\Psi {{e}^{i\varphi \left( \underline{x},t \right)}}</math> eine Lösung der Schrödingergleichung und ergibt dieselben Eigenwerte.
nichts an der Phase ändern, dass heißt mit Ψ ist auch <math>\Psi {{e}^{i\varphi \left( \underline{x},t \right)}}</math> eine Lösung der Schrödingergleichung und ergibt dieselben Eigenwerte.
===Lösung===
===Lösung===


Lösung: In (1.20) machen <math>\underline{\nabla }</math> und <math>{{\partial }_{t}}</math>in
Lösung: In (1.20) machen <math>\underline{\nabla }</math> und <math>{{\partial }_{t}}</math>in


<math>\hat{O}\left( \underline{x},\underline{\nabla },{{\partial }_{t}} \right)</math>
:<math>\hat{O}\left( \underline{x},\underline{\nabla },{{\partial }_{t}} \right)</math>


Probleme, da z.B.
Probleme, da z.B.
Zeile 86: Zeile 86:
{{NumBlk|:|
{{NumBlk|:|


<math>\underline{\nabla }\Psi \left( \underline{x},t \right){{e}^{i\varphi \left( \underline{x},t \right)}}\ne {{e}^{i\varphi \left( \underline{x},t \right)}}\underline{\nabla }\Psi \left( \underline{x},t \right)</math>
:<math>\underline{\nabla }\Psi \left( \underline{x},t \right){{e}^{i\varphi \left( \underline{x},t \right)}}\ne {{e}^{i\varphi \left( \underline{x},t \right)}}\underline{\nabla }\Psi \left( \underline{x},t \right)</math>


: |(1.22)|RawN=.}}
: |(1.22)|RawN=.}}
Zeile 96: Zeile 96:
{{NumBlk|:|
{{NumBlk|:|


<math>{{\underline{D}}_{\phi }}\Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}={{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}\underline{D}\Psi \left( \underline{x},t \right)</math>
:<math>{{\underline{D}}_{\phi }}\Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}={{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}\underline{D}\Psi \left( \underline{x},t \right)</math>


: |(1.23)|RawN=.}}
: |(1.23)|RawN=.}}
Zeile 102: Zeile 102:
Mit dem Ansatz <math>{{\underline{D}}_{\varphi }}=\underline{\nabla }+{{\underline{f}}_{\varphi }}\left( \underline{x},t \right)</math> und ebenso für die Zeitableitung <math>{{\partial }_{t}}\to D_{\varphi }^{0}={{\partial }_{t}}+{{g}_{\varphi }}\left( t \right)</math> folgt dann
Mit dem Ansatz <math>{{\underline{D}}_{\varphi }}=\underline{\nabla }+{{\underline{f}}_{\varphi }}\left( \underline{x},t \right)</math> und ebenso für die Zeitableitung <math>{{\partial }_{t}}\to D_{\varphi }^{0}={{\partial }_{t}}+{{g}_{\varphi }}\left( t \right)</math> folgt dann


<math>\begin{align}
:<math>\begin{align}


& {{{\underline{D}}}_{\varphi }}\Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}=\left( \underline{\nabla }\Psi  \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}+\Psi \mathfrak{i} \left( \underline{\nabla }\varphi  \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)\quad ={{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}\left( {{{\underline{D}}}_{\varphi }}+\mathfrak{i} \underline{\nabla }\varphi  \right)\Psi  \\
& {{{\underline{D}}}_{\varphi }}\Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}=\left( \underline{\nabla }\Psi  \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}+\Psi \mathfrak{i} \left( \underline{\nabla }\varphi  \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)\quad ={{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}\left( {{{\underline{D}}}_{\varphi }}+\mathfrak{i} \underline{\nabla }\varphi  \right)\Psi  \\
Zeile 114: Zeile 114:
{{NumBlk|:|
{{NumBlk|:|


<math>\begin{align}
:<math>\begin{align}


& {{{\underline{D}}}_{\varphi }}=\underline{\nabla }+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)\quad \leftrightarrow \quad \underline{D}=\underline{\nabla }+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)+\mathfrak{i} \nabla \varphi \left( \underline{x},t \right) \\
& {{{\underline{D}}}_{\varphi }}=\underline{\nabla }+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)\quad \leftrightarrow \quad \underline{D}=\underline{\nabla }+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)+\mathfrak{i} \nabla \varphi \left( \underline{x},t \right) \\
Zeile 126: Zeile 126:
Nun liefert der Vergleich mit (1.17)
Nun liefert der Vergleich mit (1.17)


<math>\underline{A}\to \underline{A}+\underline{\nabla }.\chi \quad \phi \to \phi -{{\partial }_{t}}\chi \quad \text{mit }\chi \in \mathbb{R}\quad c=1</math>
:<math>\underline{A}\to \underline{A}+\underline{\nabla }.\chi \quad \phi \to \phi -{{\partial }_{t}}\chi \quad \text{mit }\chi \in \mathbb{R}\quad c=1</math>


<math>{{\underline{f}}_{\varphi }}=\mathfrak{i} \alpha \underline{A},\quad \varphi =\alpha \chi ,\quad {{g}_{\varphi }}=-\mathfrak{i} \alpha \varphi ,\quad \alpha \in \mathbb{R}</math>
:<math>{{\underline{f}}_{\varphi }}=\mathfrak{i} \alpha \underline{A},\quad \varphi =\alpha \chi ,\quad {{g}_{\varphi }}=-\mathfrak{i} \alpha \varphi ,\quad \alpha \in \mathbb{R}</math>


in der Schrödingergleichung steht also statt <math>\underline{\nabla }</math> nun <math>\underline{\nabla }+\mathfrak{i} \alpha \underline{A}</math> und statt <math>{{\partial }_{t}}</math> nun <math>{{\partial }_{t}}-\mathfrak{i} \alpha \varphi </math> mit <math>{{\underline{f}}_{\varphi }},{{g}_{\varphi }}</math> als <u>Eichfelder.</u>
in der Schrödingergleichung steht also statt <math>\underline{\nabla }</math> nun <math>\underline{\nabla }+\mathfrak{i} \alpha \underline{A}</math> und statt <math>{{\partial }_{t}}</math> nun <math>{{\partial }_{t}}-\mathfrak{i} \alpha \varphi </math> mit <math>{{\underline{f}}_{\varphi }},{{g}_{\varphi }}</math> als <u>Eichfelder.</u>
Zeile 140: Zeile 140:
{{NumBlk|:|
{{NumBlk|:|


<math>\mathfrak{i} {{\partial }_{t}}\Psi =\left\{ \frac{{{\left( \underline{p}-e\underline{A} \right)}^{2}}}{2m}+e\phi  \right\}\Psi </math>
:<math>\mathfrak{i} {{\partial }_{t}}\Psi =\left\{ \frac{{{\left( \underline{p}-e\underline{A} \right)}^{2}}}{2m}+e\phi  \right\}\Psi </math>


: |(1.25)|RawN=.}}
: |(1.25)|RawN=.}}
Zeile 149: Zeile 149:
* Die „Vorschrift“ <math>\underline{p}\to \underline{p}-e\underline{A}</math> heißt {{FB|minimale Kopplung}}
* Die „Vorschrift“ <math>\underline{p}\to \underline{p}-e\underline{A}</math> heißt {{FB|minimale Kopplung}}
* Durch das Prinzip der lokalen Eichinvarianz haben wir die Potentiale ϕ und <u>A</u> sowie die {{FB|Kopplungskonstante}} e quasi „hergeleitet“.
* Durch das Prinzip der lokalen Eichinvarianz haben wir die Potentiale ϕ und <u>A</u> sowie die {{FB|Kopplungskonstante}} e quasi „hergeleitet“.
** Jetzt Klein-Gordon-Gleichung{{FB|Klein-Gordon-Gleichung:elektrisches Feld}} mit ϕ, <u>A</u>: Wieder eichinvariante Ableitungen wie bei Schrödingergleichung
** Jetzt {{FB|Klein-Gordon-Gleichung|elektrisches Feld}} mit ϕ, <u>A</u>: Wieder eichinvariante Ableitungen wie bei Schrödingergleichung
{{NumBlk|:|
{{NumBlk|:|


<math>\begin{align}
:<math>\begin{align}


& \hat{\underline{p}}=\frac{\hbar }{\mathfrak{i} }\underline{\nabla }\quad \to \hat{\underline{p}}-e\underline{A}=\frac{\hbar }{\mathfrak{i} }\underline{\nabla }-e\underline{A} \\
& \hat{\underline{p}}=\frac{\hbar }{\mathfrak{i} }\underline{\nabla }\quad \to \hat{\underline{p}}-e\underline{A}=\frac{\hbar }{\mathfrak{i} }\underline{\nabla }-e\underline{A} \\
Zeile 162: Zeile 162:
: |(1.26)|RawN=.}}
: |(1.26)|RawN=.}}


<math>\begin{align}
:<math>\begin{align}


& \square =\partial _{t}^{2}-{{{\underline{\nabla }}}^{2}}\quad \to {{\left( {{\partial }_{t}}+\mathfrak{i} e\varphi  \right)}^{2}}-{{\left( \underline{\nabla }-\frac{\mathfrak{i} e}{\hbar }\underline{A} \right)}^{2}} \\
& \square =\partial _{t}^{2}-{{{\underline{\nabla }}}^{2}}\quad \to {{\left( {{\partial }_{t}}+\mathfrak{i} e\varphi  \right)}^{2}}-{{\left( \underline{\nabla }-\frac{\mathfrak{i} e}{\hbar }\underline{A} \right)}^{2}} \\
Zeile 174: Zeile 174:
{{NumBlk|:|
{{NumBlk|:|


<math>\left\{ {{\left( {{\partial }_{t}}+\mathfrak{i} e\varphi  \right)}^{2}}-\Delta +m_{0}^{2} \right\}\Psi =0</math>
:<math>\left\{ {{\left( {{\partial }_{t}}+\mathfrak{i} e\varphi  \right)}^{2}}-\Delta +m_{0}^{2} \right\}\Psi =0</math>


: |(1.27)|RawN=.}}
: |(1.27)|RawN=.}}
Zeile 180: Zeile 180:
Lösen durch {{FB|Separationsansatz}}
Lösen durch {{FB|Separationsansatz}}


<math>\Psi \left( r,\theta ,\varphi ;t \right)={{e}^{\mathfrak{i} Et}}\underbrace{{{Y}_{lm}}\left( \theta ,\varphi  \right)}_{\text{Kugelfl }\!\!\ddot{\mathrm{a}}\!\!\text{ chenfunktionen}}\frac{\chi \left( r \right)}{x}</math>
:<math>\Psi \left( r,\theta ,\varphi ;t \right)={{e}^{\mathfrak{i} Et}}\underbrace{{{Y}_{lm}}\left( \theta ,\varphi  \right)}_{\text{Kugelfl }\!\!\ddot{\mathrm{a}}\!\!\text{ chenfunktionen}}\frac{\chi \left( r \right)}{x}</math>


* Radialgleichung für {{FB|Radialwellenfunktionen}}<math>\chi \left( r \right)</math>
* Radialgleichung für {{FB|Radialwellenfunktionen}}<math>\chi \left( r \right)</math>
* Vergleich mit H-Atom. Schrödingergleichung <font color="#FFFF00">'''''(AUFGABE)''''' </font>liefert
* Vergleich mit H-Atom. Schrödingergleichung <font color="#3399FF">'''''(AUFGABE)''''' </font>liefert
{{NumBlk|:| <math>E=\pm {{m}_{0}}\left( 1-\frac{{{Z}^{2}}{{\alpha }^{2}}}{2{{n}^{2}}}+\frac{{{Z}^{2}}{{\alpha }^{4}}}{{{n}^{4}}}\left[ \frac{3}{8}-\frac{n}{2l+1} \right]+O\left( {{z}^{6}}{{\alpha }^{6}} \right) \right)</math>
{{NumBlk|:| <math>E=\pm {{m}_{0}}\left( 1-\frac{{{Z}^{2}}{{\alpha }^{2}}}{2{{n}^{2}}}+\frac{{{Z}^{2}}{{\alpha }^{4}}}{{{n}^{4}}}\left[ \frac{3}{8}-\frac{n}{2l+1} \right]+O\left( {{z}^{6}}{{\alpha }^{6}} \right) \right)</math>



Aktuelle Version vom 12. September 2010, 15:41 Uhr


Die klassische relativistische Dispersionsrelation E=E(p_) für freie Teilchen der Masse m ohne äußeres Potential lautet:

E2=m2c4+p2c2
     (1.15)


  • Potential ϕ, Vektorpotential A beschreiben das elektromagnetische Feld der Maxwell-Gleichungen. Wie ädert sich damit (1.15)? Erinnerung:
MagnetfeldB_=_×A_elektrisches FeldE_=_ϕ1ctA_
     (1.16)


A_A_+_.χϕϕ1ctχ
     (1.17)


mit einer beliebigen skalaren Funktion χ=χ(x_,t).


  • Klassische Mechanik: E und B in Hamiltonfunktion eines Teilchens mit Masse m, Ladung e „einbauen“ durch
H=p22mH=(p_eA_)22m+eϕ


     (1.18)


aus den Hamilton-Gleichungen r˙_=p_Hp˙_=r_H folgt (AUFGABE)
mr_¨=e(r_˙×B_+E_)
d.h. die Newton‘schen Bewegungsgleichungen mit der Lorentzkraft sind ‚manifest invariant‘, da nur E und B in ihr auftreten, d.h. die Bahn (r_˙,r_)im Phasenraum nicht von χ vgl. (1.17) abhängt.
itΨ=H^Ψ={(p_^eA_)22m+eϕ}Ψ


     (1.19)
(durch Vergleich mit (1.18))
Erwartungswerte sind invariant unter globalen Eichtransformationen
Ψ*(x_,t)O^(x_,_,t)Ψ(x_,t)ddx=invariant


     (1.20)


      • Schritt 3: (Prinzip der lokalen Eichinvarianz) ändere die Schrödingergleichung so, dass lokale Eichtransformationen
Ψ(x_,t)Ψ(x_,t)eiφ(x_,t)
     (1.21)


nichts an der Phase ändern, dass heißt mit Ψ ist auch Ψeiφ(x_,t) eine Lösung der Schrödingergleichung und ergibt dieselben Eigenwerte.

Lösung

Lösung: In (1.20) machen _ und tin

O^(x_,_,t)

Probleme, da z.B.

_Ψ(x_,t)eiφ(x_,t)eiφ(x_,t)_Ψ(x_,t)
     (1.22)


was man bräuchte, um die Phase in (1.20) zu eliminieren.

Idee: ersetze Ableitung _durch „kovariante Ableitung“ D[1], so dass

D_ϕΨ(x_,t)eiφ(x_,t)=eiφ(x_,t)D_Ψ(x_,t)
     (1.23)


Mit dem Ansatz D_φ=_+f_φ(x_,t) und ebenso für die Zeitableitung tDφ0=t+gφ(t) folgt dann

D_φΨ(x_,t)eiφ(x_,t)=(_Ψ)eiφ(x_,t)+Ψi(_φ)eiφ(x_,t)+f_φ(x_,t)=eiφ(x_,t)(D_φ+i_φ)ΨDφ0Ψ(x_,t)eiφ(x_,t)==eiφ(x_,t)(D_φ0+itφ)Ψ

Die lokale Eichtransformation bewirkt also

D_φ=_+f_φ(x_,t)D_=_+f_φ(x_,t)+iφ(x_,t)D0=t+gφ(x_,t)D0=t+gφ(x_,t)+itφ(x_,t)
     (1.24)


Nun liefert der Vergleich mit (1.17)

A_A_+_.χϕϕtχmit χc=1
f_φ=iαA_,φ=αχ,gφ=iαφ,α

in der Schrödingergleichung steht also statt _ nun _+iαA_ und statt t nun tiαφ mit f_φ,gφ als Eichfelder.

Sei=1. Statt

itΨ=12m(_i)2Ψnun itΨ+αϕΨ=12m(_i+αA_)2Ψ

Die Umbenennung von αeliefert

itΨ={(p_eA_)22m+eϕ}Ψ
     (1.25)


Diskussion

p_^=i_p_^eA_=i_eA_tt+ieϕ
     (1.26)


=t2_2(t+ieφ)2(_ieA_)2(+m2)Ψ=0{(t+ieφ)2(_ieA_)2+m2}Ψ=0(=c=1)

Anwendung: Klein Gordon Gleichung für Coulomb-Potential: A_=0,eϕ=Zα. Ähnlich wie bei derSchrödingergleichung für das Wasserstoffproblem haben wir

{(t+ieφ)2Δ+m02}Ψ=0
     (1.27)


Lösen durch Separationsansatz

Ψ(r,θ,φ;t)=eiEtYlm(θ,φ)Kugelfl a¨ chenfunktionenχ(r)x
E=±m0(1Z2α22n2+Z2α4n4[38n2l+1]+O(z6α6))


     (1.28)


hier gibt es positive und negative Lösungen nHauptquantenzahlnrRadialquantenzahl+1+l

Der 3. Termin in (1.28) ist die relativistische Korrektur zur kinetischen Energie. Spin wird durch Klein-Gordon-Gleichung nicht beschrieben deshalb ist (1.28) nicht geeignet für Feinstruktur des H-Atoms

Klein Gordon Gleichung beschreibt Spin -0 – Teilchen z.B. π-Mesonen.

Spin ½ → Dirac Gleichung

  1. D_Ψ für Wellenfunktion ohne extra Phase eiφ,D_φΨeiφfür Wellenfunktion mit extra Phase