Klein Gordon im (Vektor)Potential, Eichinvarianz: Unterschied zwischen den Versionen
*>SchuBot Einrückungen Mathematik |
|||
(Eine dazwischenliegende Version von einem anderen Benutzer wird nicht angezeigt) | |||
Zeile 5: | Zeile 5: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>{{E}^{2}}={{m}^{2}}{{c}^{4}}+{{p}^{2}}{{c}^{2}}</math> | :<math>{{E}^{2}}={{m}^{2}}{{c}^{4}}+{{p}^{2}}{{c}^{2}}</math> | ||
: |(1.15)|RawN=.}} | : |(1.15)|RawN=.}} | ||
Zeile 12: | Zeile 12: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\begin{align} | :<math>\begin{align} | ||
\text{Magnetfeld}\quad \underline{B}&=\underline{\nabla }\times \underline{A} \\ | \text{Magnetfeld}\quad \underline{B}&=\underline{\nabla }\times \underline{A} \\ | ||
Zeile 25: | Zeile 25: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \underline{A}\to \underline{A}+\underline{\nabla }.\chi \\ | & \underline{A}\to \underline{A}+\underline{\nabla }.\chi \\ | ||
Zeile 53: | Zeile 53: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\mathfrak{i} \hbar {{\partial }_{t}}\Psi =\hat{H}\Psi =\left\{ \frac{{{\left( \hat{\underline{p}}-e\underline{A} \right)}^{2}}}{2m}+e\phi \right\}\Psi </math> | :<math>\mathfrak{i} \hbar {{\partial }_{t}}\Psi =\hat{H}\Psi =\left\{ \frac{{{\left( \hat{\underline{p}}-e\underline{A} \right)}^{2}}}{2m}+e\phi \right\}\Psi </math> | ||
|(1.19)|RawN=.}} | |(1.19)|RawN=.}} | ||
Zeile 63: | Zeile 63: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\int{{{\Psi }^{*}}\left( \underline{x},t \right)\hat{O}\left( \underline{x},\underline{\nabla },{{\partial }_{t}} \right)\Psi \left( \underline{x},t \right){{d}^{d}}x}=\text{invariant}</math> | :<math>\int{{{\Psi }^{*}}\left( \underline{x},t \right)\hat{O}\left( \underline{x},\underline{\nabla },{{\partial }_{t}} \right)\Psi \left( \underline{x},t \right){{d}^{d}}x}=\text{invariant}</math> | ||
|(1.20)|RawN=.}} | |(1.20)|RawN=.}} | ||
Zeile 70: | Zeile 70: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\Psi \left( \underline{x},t \right)\to \Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}</math> | :<math>\Psi \left( \underline{x},t \right)\to \Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}</math> | ||
: |(1.21)|RawN=.}} | : |(1.21)|RawN=.}} | ||
Zeile 80: | Zeile 80: | ||
Lösung: In (1.20) machen <math>\underline{\nabla }</math> und <math>{{\partial }_{t}}</math>in | Lösung: In (1.20) machen <math>\underline{\nabla }</math> und <math>{{\partial }_{t}}</math>in | ||
<math>\hat{O}\left( \underline{x},\underline{\nabla },{{\partial }_{t}} \right)</math> | :<math>\hat{O}\left( \underline{x},\underline{\nabla },{{\partial }_{t}} \right)</math> | ||
Probleme, da z.B. | Probleme, da z.B. | ||
Zeile 86: | Zeile 86: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\underline{\nabla }\Psi \left( \underline{x},t \right){{e}^{i\varphi \left( \underline{x},t \right)}}\ne {{e}^{i\varphi \left( \underline{x},t \right)}}\underline{\nabla }\Psi \left( \underline{x},t \right)</math> | :<math>\underline{\nabla }\Psi \left( \underline{x},t \right){{e}^{i\varphi \left( \underline{x},t \right)}}\ne {{e}^{i\varphi \left( \underline{x},t \right)}}\underline{\nabla }\Psi \left( \underline{x},t \right)</math> | ||
: |(1.22)|RawN=.}} | : |(1.22)|RawN=.}} | ||
Zeile 96: | Zeile 96: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>{{\underline{D}}_{\phi }}\Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}={{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}\underline{D}\Psi \left( \underline{x},t \right)</math> | :<math>{{\underline{D}}_{\phi }}\Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}={{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}\underline{D}\Psi \left( \underline{x},t \right)</math> | ||
: |(1.23)|RawN=.}} | : |(1.23)|RawN=.}} | ||
Zeile 102: | Zeile 102: | ||
Mit dem Ansatz <math>{{\underline{D}}_{\varphi }}=\underline{\nabla }+{{\underline{f}}_{\varphi }}\left( \underline{x},t \right)</math> und ebenso für die Zeitableitung <math>{{\partial }_{t}}\to D_{\varphi }^{0}={{\partial }_{t}}+{{g}_{\varphi }}\left( t \right)</math> folgt dann | Mit dem Ansatz <math>{{\underline{D}}_{\varphi }}=\underline{\nabla }+{{\underline{f}}_{\varphi }}\left( \underline{x},t \right)</math> und ebenso für die Zeitableitung <math>{{\partial }_{t}}\to D_{\varphi }^{0}={{\partial }_{t}}+{{g}_{\varphi }}\left( t \right)</math> folgt dann | ||
<math>\begin{align} | :<math>\begin{align} | ||
& {{{\underline{D}}}_{\varphi }}\Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}=\left( \underline{\nabla }\Psi \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}+\Psi \mathfrak{i} \left( \underline{\nabla }\varphi \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)\quad ={{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}\left( {{{\underline{D}}}_{\varphi }}+\mathfrak{i} \underline{\nabla }\varphi \right)\Psi \\ | & {{{\underline{D}}}_{\varphi }}\Psi \left( \underline{x},t \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}=\left( \underline{\nabla }\Psi \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}+\Psi \mathfrak{i} \left( \underline{\nabla }\varphi \right){{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)\quad ={{e}^{\mathfrak{i} \varphi \left( \underline{x},t \right)}}\left( {{{\underline{D}}}_{\varphi }}+\mathfrak{i} \underline{\nabla }\varphi \right)\Psi \\ | ||
Zeile 114: | Zeile 114: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\begin{align} | :<math>\begin{align} | ||
& {{{\underline{D}}}_{\varphi }}=\underline{\nabla }+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)\quad \leftrightarrow \quad \underline{D}=\underline{\nabla }+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)+\mathfrak{i} \nabla \varphi \left( \underline{x},t \right) \\ | & {{{\underline{D}}}_{\varphi }}=\underline{\nabla }+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)\quad \leftrightarrow \quad \underline{D}=\underline{\nabla }+{{{\underline{f}}}_{\varphi }}\left( \underline{x},t \right)+\mathfrak{i} \nabla \varphi \left( \underline{x},t \right) \\ | ||
Zeile 126: | Zeile 126: | ||
Nun liefert der Vergleich mit (1.17) | Nun liefert der Vergleich mit (1.17) | ||
<math>\underline{A}\to \underline{A}+\underline{\nabla }.\chi \quad \phi \to \phi -{{\partial }_{t}}\chi \quad \text{mit }\chi \in \mathbb{R}\quad c=1</math> | :<math>\underline{A}\to \underline{A}+\underline{\nabla }.\chi \quad \phi \to \phi -{{\partial }_{t}}\chi \quad \text{mit }\chi \in \mathbb{R}\quad c=1</math> | ||
<math>{{\underline{f}}_{\varphi }}=\mathfrak{i} \alpha \underline{A},\quad \varphi =\alpha \chi ,\quad {{g}_{\varphi }}=-\mathfrak{i} \alpha \varphi ,\quad \alpha \in \mathbb{R}</math> | :<math>{{\underline{f}}_{\varphi }}=\mathfrak{i} \alpha \underline{A},\quad \varphi =\alpha \chi ,\quad {{g}_{\varphi }}=-\mathfrak{i} \alpha \varphi ,\quad \alpha \in \mathbb{R}</math> | ||
in der Schrödingergleichung steht also statt <math>\underline{\nabla }</math> nun <math>\underline{\nabla }+\mathfrak{i} \alpha \underline{A}</math> und statt <math>{{\partial }_{t}}</math> nun <math>{{\partial }_{t}}-\mathfrak{i} \alpha \varphi </math> mit <math>{{\underline{f}}_{\varphi }},{{g}_{\varphi }}</math> als <u>Eichfelder.</u> | in der Schrödingergleichung steht also statt <math>\underline{\nabla }</math> nun <math>\underline{\nabla }+\mathfrak{i} \alpha \underline{A}</math> und statt <math>{{\partial }_{t}}</math> nun <math>{{\partial }_{t}}-\mathfrak{i} \alpha \varphi </math> mit <math>{{\underline{f}}_{\varphi }},{{g}_{\varphi }}</math> als <u>Eichfelder.</u> | ||
Zeile 140: | Zeile 140: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\mathfrak{i} {{\partial }_{t}}\Psi =\left\{ \frac{{{\left( \underline{p}-e\underline{A} \right)}^{2}}}{2m}+e\phi \right\}\Psi </math> | :<math>\mathfrak{i} {{\partial }_{t}}\Psi =\left\{ \frac{{{\left( \underline{p}-e\underline{A} \right)}^{2}}}{2m}+e\phi \right\}\Psi </math> | ||
: |(1.25)|RawN=.}} | : |(1.25)|RawN=.}} | ||
Zeile 152: | Zeile 152: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \hat{\underline{p}}=\frac{\hbar }{\mathfrak{i} }\underline{\nabla }\quad \to \hat{\underline{p}}-e\underline{A}=\frac{\hbar }{\mathfrak{i} }\underline{\nabla }-e\underline{A} \\ | & \hat{\underline{p}}=\frac{\hbar }{\mathfrak{i} }\underline{\nabla }\quad \to \hat{\underline{p}}-e\underline{A}=\frac{\hbar }{\mathfrak{i} }\underline{\nabla }-e\underline{A} \\ | ||
Zeile 162: | Zeile 162: | ||
: |(1.26)|RawN=.}} | : |(1.26)|RawN=.}} | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \square =\partial _{t}^{2}-{{{\underline{\nabla }}}^{2}}\quad \to {{\left( {{\partial }_{t}}+\mathfrak{i} e\varphi \right)}^{2}}-{{\left( \underline{\nabla }-\frac{\mathfrak{i} e}{\hbar }\underline{A} \right)}^{2}} \\ | & \square =\partial _{t}^{2}-{{{\underline{\nabla }}}^{2}}\quad \to {{\left( {{\partial }_{t}}+\mathfrak{i} e\varphi \right)}^{2}}-{{\left( \underline{\nabla }-\frac{\mathfrak{i} e}{\hbar }\underline{A} \right)}^{2}} \\ | ||
Zeile 174: | Zeile 174: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\left\{ {{\left( {{\partial }_{t}}+\mathfrak{i} e\varphi \right)}^{2}}-\Delta +m_{0}^{2} \right\}\Psi =0</math> | :<math>\left\{ {{\left( {{\partial }_{t}}+\mathfrak{i} e\varphi \right)}^{2}}-\Delta +m_{0}^{2} \right\}\Psi =0</math> | ||
: |(1.27)|RawN=.}} | : |(1.27)|RawN=.}} | ||
Zeile 180: | Zeile 180: | ||
Lösen durch {{FB|Separationsansatz}} | Lösen durch {{FB|Separationsansatz}} | ||
<math>\Psi \left( r,\theta ,\varphi ;t \right)={{e}^{\mathfrak{i} Et}}\underbrace{{{Y}_{lm}}\left( \theta ,\varphi \right)}_{\text{Kugelfl }\!\!\ddot{\mathrm{a}}\!\!\text{ chenfunktionen}}\frac{\chi \left( r \right)}{x}</math> | :<math>\Psi \left( r,\theta ,\varphi ;t \right)={{e}^{\mathfrak{i} Et}}\underbrace{{{Y}_{lm}}\left( \theta ,\varphi \right)}_{\text{Kugelfl }\!\!\ddot{\mathrm{a}}\!\!\text{ chenfunktionen}}\frac{\chi \left( r \right)}{x}</math> | ||
* Radialgleichung für {{FB|Radialwellenfunktionen}}<math>\chi \left( r \right)</math> | * Radialgleichung für {{FB|Radialwellenfunktionen}}<math>\chi \left( r \right)</math> | ||
* Vergleich mit H-Atom. Schrödingergleichung <font color="# | * Vergleich mit H-Atom. Schrödingergleichung <font color="#3399FF">'''''(AUFGABE)''''' </font>liefert | ||
{{NumBlk|:| <math>E=\pm {{m}_{0}}\left( 1-\frac{{{Z}^{2}}{{\alpha }^{2}}}{2{{n}^{2}}}+\frac{{{Z}^{2}}{{\alpha }^{4}}}{{{n}^{4}}}\left[ \frac{3}{8}-\frac{n}{2l+1} \right]+O\left( {{z}^{6}}{{\alpha }^{6}} \right) \right)</math> | {{NumBlk|:| <math>E=\pm {{m}_{0}}\left( 1-\frac{{{Z}^{2}}{{\alpha }^{2}}}{2{{n}^{2}}}+\frac{{{Z}^{2}}{{\alpha }^{4}}}{{{n}^{4}}}\left[ \frac{3}{8}-\frac{n}{2l+1} \right]+O\left( {{z}^{6}}{{\alpha }^{6}} \right) \right)</math> | ||
Aktuelle Version vom 12. September 2010, 15:41 Uhr
Der Artikel Klein Gordon im (Vektor)Potential, Eichinvarianz basiert auf der Vorlesungsmitschrift von Moritz Schubotz des 1.Kapitels (Abschnitt 3) der Quantenmechanikvorlesung von Prof. Dr. T. Brandes. |
|}}
Die klassische relativistische Dispersionsrelation für freie Teilchen der Masse m ohne äußeres Potential lautet:
- Potential ϕ, Vektorpotential A beschreiben das elektromagnetische Feld der Maxwell-Gleichungen. Wie ädert sich damit (1.15)? Erinnerung:
- E und B ändern sich nicht bei Eichtransformation
mit einer beliebigen skalaren Funktion
- Klassische Mechanik: E und B in Hamiltonfunktion eines Teilchens mit Masse m, Ladung e „einbauen“ durch
- aus den Hamilton-Gleichungen folgt (AUFGABE)
- d.h. die Newton‘schen Bewegungsgleichungen mit der Lorentzkraft sind ‚manifest invariant‘, da nur E und B in ihr auftreten, d.h. die Bahn im Phasenraum nicht von vgl. (1.17) abhängt.
- Quantenmechanik
- Schrödingergleichung durch Korrespondenzprinzip
- (durch Vergleich mit (1.18))
- Schrödingergleichung + Prinzip der lokalen Eichinvarianz (fundamentaler und wesentlich für die QED und QCD etc.)
- Erwartungswerte sind invariant unter globalen Eichtransformationen
- Schritt 3: (Prinzip der lokalen Eichinvarianz) ändere die Schrödingergleichung so, dass lokale Eichtransformationen
nichts an der Phase ändern, dass heißt mit Ψ ist auch eine Lösung der Schrödingergleichung und ergibt dieselben Eigenwerte.
Lösung
Lösung: In (1.20) machen und in
Probleme, da z.B.
was man bräuchte, um die Phase in (1.20) zu eliminieren.
Idee: ersetze Ableitung durch „kovariante Ableitung“ D[1], so dass
Mit dem Ansatz und ebenso für die Zeitableitung folgt dann
Die lokale Eichtransformation bewirkt also
Nun liefert der Vergleich mit (1.17)
in der Schrödingergleichung steht also statt nun und statt nun mit als Eichfelder.
Diskussion
- Die „Vorschrift“ heißt minimale Kopplung
- Durch das Prinzip der lokalen Eichinvarianz haben wir die Potentiale ϕ und A sowie die Kopplungskonstante e quasi „hergeleitet“.
- Jetzt Klein-Gordon-Gleichung mit ϕ, A: Wieder eichinvariante Ableitungen wie bei Schrödingergleichung
Anwendung: Klein Gordon Gleichung für Coulomb-Potential: . Ähnlich wie bei derSchrödingergleichung für das Wasserstoffproblem haben wir
Lösen durch Separationsansatz
- Radialgleichung für Radialwellenfunktionen
- Vergleich mit H-Atom. Schrödingergleichung (AUFGABE) liefert
hier gibt es positive und negative Lösungen
Der 3. Termin in (1.28) ist die relativistische Korrektur zur kinetischen Energie. Spin wird durch Klein-Gordon-Gleichung nicht beschrieben deshalb ist (1.28) nicht geeignet für Feinstruktur des H-Atoms
Klein Gordon Gleichung beschreibt Spin -0 – Teilchen z.B. π-Mesonen.
Spin ½ → Dirac Gleichung
- ↑ für Wellenfunktion ohne extra Phase ,für Wellenfunktion mit extra Phase