SchwingendeRollendeWagen: Unterschied zwischen den Versionen
Die Seite wurde neu angelegt: „Das im Bild dargestellte System besteht aus zwei Wagen mit einer Feder. Für t < 0 befindet sich das System unter Wirkung der Kraft F = 1, 3 kN im Gleichgewicht, …“ |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
Das im Bild dargestellte System besteht aus zwei Wagen mit einer Feder. Für t < 0 befindet sich das System unter Wirkung der Kraft F = 1, 3 kN im Gleichgewicht, die die Feder mit der Federsteifigkeit k = 2500N/m ist zusammengedrückt. Für t = 0 wird die Kraft F plötzlich entfernt und die Wagen setzen sich in Bewegung. Die Masse des Wagens A ist gegeben mit | Das im Bild dargestellte System besteht aus zwei Wagen mit einer Feder. | ||
[[Datei:SchwingendeRollendeWagen.jpg|minatur|Schwingende-rollende-Wagen]] | |||
Für t < 0 befindet sich das System unter Wirkung der Kraft <math>F = 1, 3 kN</math> im Gleichgewicht, die die Feder mit der Federsteifigkeit <math>k = 2500N/m</math> ist zusammengedrückt. Für <math>t = 0</math> wird die Kraft F plötzlich entfernt und die Wagen setzen sich in Bewegung. Die Masse des Wagens A ist gegeben mit <math>m_A = 1,2 kg</math> und die von B mit <math>m_B = 0,6 kg</math>. | |||
a) Bestimmen Sie die Geschwindigkeit | a) Bestimmen Sie die Geschwindigkeit <math>v_B</math>, mit der sich der Wagen B nach dem Ablösen von A bewegt. | ||
{{Lösung|{{PhIngGl|3.5|3.5.E}}Auflösung von {{FB|Federkraft}} und {{FB|Energieerhaltung}} nach x und v| Code=N[F] = 1300; N@k = 2500; N@mA = 1.2; N@mB = 0.6; v =.; x =. | |||
{x, v} = {x, v} /. | |||
Solve[{k x == F, 1/2 k x^2 == 1/2 (mA + mB) v^2}, {v, x}][[2]] | |||
N@v |Zahl=19.3793|Einheit=m/s}} | |||
b) Wagen B prallt zentral auf einen ruhenden Wagen C der Masse mC = 1 kg. Wagen B kommt komplett zum stehen (inelastischer Stoß). Wie schnell fährt Wagen C? | |||
{{Lösung|{{PhIngGl|2.2}} {{FB|Impulserhaltung}}|Code=N@mC = 1; v2 =. | |||
v2 = v2 /. Solve[mB v == mC v2, v2][[1]] | |||
N@v2|Zahl=11.6276|Einheit=m/s}} | |||
c) Geben Sie die Differentialgleichung an, mit der der Wagen A harmonisch schwingt. (Beachten Sie, dass der Wagen B sich abgelöst hat.) | c) Geben Sie die Differentialgleichung an, mit der der Wagen A harmonisch schwingt. (Beachten Sie, dass der Wagen B sich abgelöst hat.) | ||
{{Lösung| | |||
{{Lösung|{{PhIngGl|2.4|2.2|1.7|3.5}} <math>m\dot \dot x =-kx</math>}} | |||
d) Mit welcher Frequenz schwingt der Wagen A nach dem Ablösen? | d) Mit welcher Frequenz schwingt der Wagen A nach dem Ablösen? | ||
{{Lösung|{{PhIngGl|4.29}}es handelt sich um ein [[Federpendel]]|Code=Clear[x]; | |||
DSolve[mA D[x[t], {t, 2}] == -k x[t], x[t], t] | |||
N[Sqrt[k/mA]]|Zahl=45.6435|Einheit=1/s|Ende=Die Lösung der Differtialgleichung lautet <math>x(t)\to c_2 \sin \left(\frac{\sqrt{k} t}{\sqrt{\text{mA}}}\right)+c_1 \cos \left(\frac{\sqrt{k} t}{\sqrt{\text{mA}}}\right)</math> Die {{FB|Kreisfrequenz}} ist der Vorfaktor vor dem t. Man kann das Ergebnis noch durch 2 /pi teilen um die "normale" Frequenz zu erhalten (11.4109) }} | |||
e) Berechnen Sie die Frequenz ω, wenn Wagen A mit β =r/2m =15 s^(-1) gebremst würde. | |||
{{Lösung|{{PhIngGl|4.33}}|Code= | |||
r =.; | |||
DSolve[mA x''[t] == -k x[t] - r x'[t], x[t], t] | |||
N@\[Beta] = 15; | |||
r = \[Beta] 2 mA | |||
N@(Sqrt[4 k mA - r^2]/(2 mA))|Zahl=43.1084|Einheit=1/s|Ende=Die Lösung der Differtialgleichung lautet | |||
<math>x(t)\to c_1 e^{\frac{t \left(-\sqrt{r^2-4 k \text{mA}}-r\right)}{2 \text{mA}}}+c_2 e^{\frac{t \left(\sqrt{r^2-4 k \text{mA}}-r\right)}{2 \text{mA}</math>. <math>\nu=6.86091 \frac{1}{s}</math>}} | |||
{{Klausuraufgabe | {{Klausuraufgabe |
Version vom 21. Dezember 2010, 19:42 Uhr
Das im Bild dargestellte System besteht aus zwei Wagen mit einer Feder.
Für t < 0 befindet sich das System unter Wirkung der Kraft im Gleichgewicht, die die Feder mit der Federsteifigkeit ist zusammengedrückt. Für wird die Kraft F plötzlich entfernt und die Wagen setzen sich in Bewegung. Die Masse des Wagens A ist gegeben mit und die von B mit .
a) Bestimmen Sie die Geschwindigkeit , mit der sich der Wagen B nach dem Ablösen von A bewegt.
Verwendete Formeln: [1][2]Auflösung von Federkraft und Energieerhaltung nach x und v Mathematica Rechnung:
N[F] = 1300; N@k = 2500; N@mA = 1.2; N@mB = 0.6; v =.; x =.
{x, v} = {x, v} /.
Solve[{k x == F, 1/2 k x^2 == 1/2 (mA + mB) v^2}, {v, x}][[2]]
N@v
Zahlenwert:19.3793 in m/s
b) Wagen B prallt zentral auf einen ruhenden Wagen C der Masse mC = 1 kg. Wagen B kommt komplett zum stehen (inelastischer Stoß). Wie schnell fährt Wagen C?
Verwendete Formeln: [3] Impulserhaltung Mathematica Rechnung:
N@mC = 1; v2 =.
v2 = v2 /. Solve[mB v == mC v2, v2][[1]]
N@v2
Zahlenwert:11.6276 in m/s
c) Geben Sie die Differentialgleichung an, mit der der Wagen A harmonisch schwingt. (Beachten Sie, dass der Wagen B sich abgelöst hat.)
d) Mit welcher Frequenz schwingt der Wagen A nach dem Ablösen?
Verwendete Formeln: [8]es handelt sich um ein Federpendel Mathematica Rechnung:
Clear[x];
DSolve[mA D[x[t], {t, 2}] == -k x[t], x[t], t]
N[Sqrt[k/mA]]
Zahlenwert:45.6435 in 1/s Abschlussbemerkung:Die Lösung der Differtialgleichung lautet Die Kreisfrequenz ist der Vorfaktor vor dem t. Man kann das Ergebnis noch durch 2 /pi teilen um die "normale" Frequenz zu erhalten (11.4109)
e) Berechnen Sie die Frequenz ω, wenn Wagen A mit β =r/2m =15 s^(-1) gebremst würde.
Verwendete Formeln: [9] Mathematica Rechnung:
r =.;
DSolve[mA x''[t] == -k x[t] - r x'[t], x[t], t]
N@\[Beta] = 15;
r = \[Beta] 2 mA
N@(Sqrt[4 k mA - r^2]/(2 mA))
Zahlenwert:43.1084 in 1/s Abschlussbemerkung:Die Lösung der Differtialgleichung lautet
Fehler beim Parsen (Syntaxfehler): {\displaystyle x(t)\to c_1 e^{\frac{t \left(-\sqrt{r^2-4 k \text{mA}}-r\right)}{2 \text{mA}}}+c_2 e^{\frac{t \left(\sqrt{r^2-4 k \text{mA}}-r\right)}{2 \text{mA}} .
Fakten zur Klausuraufgabe SchwingendeRollendeWagen
- ↑ Thomsen,C Gumlich, H.E.: Ein Jahr für die Physik. 3. Auflage Berlin: Wissenschaft und Technik Verliag, 2008, Gleichung 3.5
- ↑ Thomsen,C Gumlich, H.E.: Ein Jahr für die Physik. 3. Auflage Berlin: Wissenschaft und Technik Verliag, 2008, Gleichung 3.5.E
- ↑ Thomsen,C Gumlich, H.E.: Ein Jahr für die Physik. 3. Auflage Berlin: Wissenschaft und Technik Verliag, 2008, Gleichung 2.2
- ↑ Thomsen,C Gumlich, H.E.: Ein Jahr für die Physik. 3. Auflage Berlin: Wissenschaft und Technik Verliag, 2008, Gleichung 2.4
- ↑ Thomsen,C Gumlich, H.E.: Ein Jahr für die Physik. 3. Auflage Berlin: Wissenschaft und Technik Verliag, 2008, Gleichung 2.2
- ↑ Thomsen,C Gumlich, H.E.: Ein Jahr für die Physik. 3. Auflage Berlin: Wissenschaft und Technik Verliag, 2008, Gleichung 1.7
- ↑ Thomsen,C Gumlich, H.E.: Ein Jahr für die Physik. 3. Auflage Berlin: Wissenschaft und Technik Verliag, 2008, Gleichung 3.5
- ↑ Thomsen,C Gumlich, H.E.: Ein Jahr für die Physik. 3. Auflage Berlin: Wissenschaft und Technik Verliag, 2008, Gleichung 4.29
- ↑ Thomsen,C Gumlich, H.E.: Ein Jahr für die Physik. 3. Auflage Berlin: Wissenschaft und Technik Verliag, 2008, Gleichung 4.33
- Datum: {{#arraymap:SS08|,|x|x}}
- Aufgabe: {{#arraymap:4|,|x|x}}
- Abschnitt: {{#arraymap:MSW|,|x|x}}
- Punkte: 10
- Tutorium:
coming soon klick the link above