Übersicht:Thermodynamik: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Zeile 78: | Zeile 78: | ||
** <math>1=\sum{{{P}_{i}}}</math> | ** <math>1=\sum{{{P}_{i}}}</math> | ||
** <math>{{P}_{i}}={{P}_{i}}'\Rightarrow K=0</math> (kein Gewinn) | ** <math>{{P}_{i}}={{P}_{i}}'\Rightarrow K=0</math> (kein Gewinn) | ||
* Informationsgewinn ^= Änderung der Shannon Information | * Informationsgewinn ^= Änderung der Shannon Information | ||
* Mit Dichtematrix <math>K\left( \rho ,{{\rho }^{0}} \right)=\operatorname{Tr}\left( \hat{\rho }\ln \frac{{\hat{\rho }}}{{{{\hat{\rho }}}^{0}}} \right)=\operatorname{Tr}\left( \hat{\rho }\left( \ln \hat{\rho }-\ln {{{\hat{\rho }}}^{0}} \right) \right)=I\left( {\hat{\rho }} \right)-I\left( {{{\hat{\rho }}}^{0}} \right)-\operatorname{Tr}\left( \hat{\rho }-{{{\hat{\rho }}}^{0}} \right)\ln \left( {{{\hat{\rho }}}^{0}} \right)</math> | * Mit Dichtematrix <math>K\left( \rho ,{{\rho }^{0}} \right)=\operatorname{Tr}\left( \hat{\rho }\ln \frac{{\hat{\rho }}}{{{{\hat{\rho }}}^{0}}} \right)=\operatorname{Tr}\left( \hat{\rho }\left( \ln \hat{\rho }-\ln {{{\hat{\rho }}}^{0}} \right) \right)=I\left( {\hat{\rho }} \right)-I\left( {{{\hat{\rho }}}^{0}} \right)-\operatorname{Tr}\left( \hat{\rho }-{{{\hat{\rho }}}^{0}} \right)\ln \left( {{{\hat{\rho }}}^{0}} \right)</math> | ||
* Für Druckensemble <math>{{{\hat{\rho }}}^{0}}=\exp \left( {{\psi }^{0}}-{{\beta }^{0}}\left( H+{{p}^{0}}V \right) \right)</math> und <math>\rho</math> nicht im Gleichgewichtszustand folgt <math>K\left( \rho ,{{\rho }^{0}} \right)=\frac{S-{{S}^{0}}}{{{T}^{0}}}+\frac{U-{{U}^{0}}+{{p}^{0}}\left( V-{{V}^{0}} \right)}{k{{T}^{0}}}</math> | * Für Druckensemble <math>{{{\hat{\rho }}}^{0}}=\exp \left( {{\psi }^{0}}-{{\beta }^{0}}\left( H+{{p}^{0}}V \right) \right)</math> und <math>\rho</math> nicht im Gleichgewichtszustand folgt <math>K\left( \rho ,{{\rho }^{0}} \right)=\frac{S-{{S}^{0}}}{{{T}^{0}}}+\frac{U-{{U}^{0}}+{{p}^{0}}\left( V-{{V}^{0}} \right)}{k{{T}^{0}}}</math> | ||
Zeile 84: | Zeile 84: | ||
* der Informationsgewinn kann nur abnehmen <math>{{d}_{t}}K\left( \rho ,{{\rho }^{0}} \right)=\frac{{{d}_{t}}\Lambda }{k{{T}^{0}}}</math> mit <math>\nu =-\frac{1}{T}{{d}_{t}}\Lambda </math> | * der Informationsgewinn kann nur abnehmen <math>{{d}_{t}}K\left( \rho ,{{\rho }^{0}} \right)=\frac{{{d}_{t}}\Lambda }{k{{T}^{0}}}</math> mit <math>\nu =-\frac{1}{T}{{d}_{t}}\Lambda </math> | ||
* --> die Entropieproduktion ist ststs <math>\ge 0</math> | * --> die Entropieproduktion ist ststs <math>\ge 0</math> | ||
==Situation in der QM== | |||
* Microzustände <math>\left| \psi \right\rangle \in \mathcal{H}</math> | |||
* Microobservablen (durch Maximalmessung (Satz von vertauschbaren Observabelen)) Operator <math>{\hat{\mathcal{M}}}</math> | |||
* Messert Eigenwert zum Eingenzustand <math>{{{\hat{M}}}_{\alpha }}\left| \psi \right\rangle ={{m}_{\alpha }}\left| \psi \right\rangle </math> | |||
* Erwartungwert | |||
** für reine Zustände <math>\left\langle {{{\hat{M}}}_{\alpha }} \right\rangle =\left\langle \psi \left| {{M}_{\alpha }} \right|\psi \right\rangle =\operatorname{Tr}\left( \hat{\rho }\hat{M} \right)</math> mit <math>\hat{\rho }=\left| \psi \right\rangle \left\langle \psi \right|</math> | |||
** für gemischte Zustände <math>\left\langle {{{\hat{M}}}_{\alpha }} \right\rangle =\sum{{{P}_{i}}\left\langle \psi \left| {{M}_{\alpha }} \right|\psi \right\rangle }=\operatorname{Tr}\left( \hat{\rho }{{{\hat{M}}}_{\alpha }} \right)</math> mit <math>\hat{\rho }=\sum{{{P}_{i}}\left| \psi \right\rangle \left\langle \psi \right|}</math> | |||
[[Kategorie:Thermodynamik]] | [[Kategorie:Thermodynamik]] |
Version vom 20. Juli 2009, 12:53 Uhr
klassische Mechanik
- Prinzip der Vorurteilsfreien Schätzung in der klassischen Mechanik
--> gleiche a –priori Wahrscheinlichkeiten
- Hamiltonfunktion mit Hamiltongleichungen
- Lösungen Trajektorien im Phasenraum
Satz von Liouville
Das Phasenraumvolumen ist invariant unter Zeitentwicklung --> gleiche Phasenvolumina ^= gleiche a-priori Wahrscheinlichkeit bleibt bestehen --> Informationsmaß über Microzustand kann mit der zeit nicht zunehmen mit
Zustand
(thermodynamischer Zustand durch Mittelwerte der Phasenraumfunktionen mit
Shannon-Information
- Information: Welches Ereignis tritt ein?
- Wie viel weiß ich von meinem System?
- Maximum --> schafte Verteilung
minimum
mit 1 Nebendbedingung führt unter Verwendung eines Lagrange-Parameters zu
lässt keine freien Parameter zu also erhält man N Gleichungen
so erhält man wegen der Normierung () die
Nebenbedingungen
- führt zum Informationstheoretischen Prinzip nach Jaynes
- Wahrscheinlichkeitsverteilung die die minimale Information enthält bei Erfüllung aller bekannten Nebenbedingungen
- Variationsverfahren mit Nebenbedingungen
- Shannon-Information soll minimal werden
- Es gibt m+1 Nebenbedingungen:
- führt zur Variation
- daraus erhält man die verallgemeinerte kanonische Verteilung
- die m+1 Lagrange-Multiplikatoren sind also eindeutig bestimmt
- , da
Fundamentalbeziehung
Beziehungen
Kullback-Information
- Informationsgewinn
- Minium Variation mit NB:
- Informationsgewinn ^= Änderung der Shannon Information
- Mit Dichtematrix
- Für Druckensemble und nicht im Gleichgewichtszustand folgt
- mit Energie
- der Informationsgewinn kann nur abnehmen mit
- --> die Entropieproduktion ist ststs