Übersicht:Thermodynamik: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
*>SchuBot Einrückungen Mathematik |
|||
Zeile 9: | Zeile 9: | ||
--> Informationsmaß über Microzustand kann mit der zeit nicht zunehmen <math>I(t_1)\ge I(t_2)</math> mit <math>t_1 < t_2</math> | --> Informationsmaß über Microzustand kann mit der zeit nicht zunehmen <math>I(t_1)\ge I(t_2)</math> mit <math>t_1 < t_2</math> | ||
==Zustand== | ==Zustand== | ||
<math>\left\langle {{M}^{\nu }} \right\rangle =\int{d\xi \rho \left( \xi \right){{M}^{\nu }}\left( \xi \right)}</math> | :<math>\left\langle {{M}^{\nu }} \right\rangle =\int{d\xi \rho \left( \xi \right){{M}^{\nu }}\left( \xi \right)}</math> | ||
(thermodynamischer Zustand durch Mittelwerte der Phasenraumfunktionen | (thermodynamischer Zustand durch Mittelwerte der Phasenraumfunktionen | ||
<math>\rho \left( \xi \right)=\exp \left( \psi -{{\lambda }_{\nu }}{{M}^{\nu }}\left( \xi \right) \right)={{z}^{-1}}\exp \left( -{{\lambda }_{\nu }}{{M}^{\nu }}\left( \xi \right) \right)</math> | :<math>\rho \left( \xi \right)=\exp \left( \psi -{{\lambda }_{\nu }}{{M}^{\nu }}\left( \xi \right) \right)={{z}^{-1}}\exp \left( -{{\lambda }_{\nu }}{{M}^{\nu }}\left( \xi \right) \right)</math> mit <math>z={{\operatorname{e}}^{-\psi }}=\int{{{e}^{-{{\lambda }_{\nu }}{{M}^{\nu }}\left( \xi \right)}}d\xi }</math> | ||
mit | |||
<math>z={{\operatorname{e}}^{-\psi }}=\int{{{e}^{-{{\lambda }_{\nu }}{{M}^{\nu }}\left( \xi \right)}}d\xi }</math> | |||
==Shannon-Information== | ==Shannon-Information== | ||
*<math>I\left( P \right)=\sum\limits_{i}{{{P}_{i}}\ln {{P}_{i}}} \le 0</math> | *<math>I\left( P \right)=\sum\limits_{i}{{{P}_{i}}\ln {{P}_{i}}} \le 0</math> | ||
Zeile 24: | Zeile 22: | ||
mit 1 Nebendbedingung <math>\sum\limits_{i}{{{P}_{i}}}=1</math> führt unter Verwendung eines Lagrange-Parameters<math>\lambda</math> zu | mit 1 Nebendbedingung <math>\sum\limits_{i}{{{P}_{i}}}=1</math> führt unter Verwendung eines Lagrange-Parameters<math>\lambda</math> zu | ||
<math>I\left( P \right)=\sum{{{P}_{i}}\ln {{P}_{i}}+\lambda \left( {{P}_{i}}-1 \right)}</math> | :<math>I\left( P \right)=\sum{{{P}_{i}}\ln {{P}_{i}}+\lambda \left( {{P}_{i}}-1 \right)}</math> | ||
die Variation, also <math>\delta I\left( P \right)=\sum{\left( \ln {{P}_{i}}+1 \right)\delta {{P}_{i}}}</math> | die Variation, also <math>\delta I\left( P \right)=\sum{\left( \ln {{P}_{i}}+1 \right)\delta {{P}_{i}}}</math> | ||
Zeile 30: | Zeile 28: | ||
lässt keine freien Parameter zu also erhält man N Gleichungen | lässt keine freien Parameter zu also erhält man N Gleichungen | ||
<math>\left( \ln {{P}_{i}} \right)=- \left( \lambda +1 \right)=\text{const.}</math> | :<math>\left( \ln {{P}_{i}} \right)=- \left( \lambda +1 \right)=\text{const.}</math> | ||
so erhält man wegen der Normierung (<math>\sum\limits_{i}{{{P}_{i}}}=1</math>) die | so erhält man wegen der Normierung (<math>\sum\limits_{i}{{{P}_{i}}}=1</math>) die | ||
Zeile 58: | Zeile 56: | ||
==Fundamentalbeziehung== | ==Fundamentalbeziehung== | ||
*durch eine Legenderetransformation <math>I\left( P \right)\to I\left( \lambda \right)</math> | *durch eine Legenderetransformation <math>I\left( P \right)\to I\left( \lambda \right)</math> | ||
<math>I\left( P \right)=\sum\limits_{i}{{{P}_{i}}\ln {{P}_{i}}}=\sum\limits_{i}{{{P}_{i}}\ln \exp \left( \psi -{{\lambda }_{\nu }}M_{i}^{\nu } \right)}=\psi \underbrace{\sum\limits_{i}{{{P}_{i}}}}_{1}-{{\lambda }_{\nu }}\sum\limits_{i}{{{P}_{i}}M_{i}^{\nu }}=\psi -{{\lambda }_{\nu }}\left\langle {{M}^{\nu }} \right\rangle </math> | :<math>I\left( P \right)=\sum\limits_{i}{{{P}_{i}}\ln {{P}_{i}}}=\sum\limits_{i}{{{P}_{i}}\ln \exp \left( \psi -{{\lambda }_{\nu }}M_{i}^{\nu } \right)}=\psi \underbrace{\sum\limits_{i}{{{P}_{i}}}}_{1}-{{\lambda }_{\nu }}\sum\limits_{i}{{{P}_{i}}M_{i}^{\nu }}=\psi -{{\lambda }_{\nu }}\left\langle {{M}^{\nu }} \right\rangle </math> | ||
* extensive Parameter <math>\left\langle {{M}^{\nu }} \right\rangle | * extensive Parameter <math>\left\langle {{M}^{\nu }} \right\rangle | ||
={{\partial }_{{{\lambda }_{\nu }}}}\psi \left( {{\lambda }_{\nu }} \right) | ={{\partial }_{{{\lambda }_{\nu }}}}\psi \left( {{\lambda }_{\nu }} \right) | ||
={{\partial }_{{{\lambda }_{\nu }}}}\left( -\ln \sum{\exp \left( -{{\lambda }_{\mu }}M_{i}^{\mu } \right)} \right)</math> | ={{\partial }_{{{\lambda }_{\nu }}}}\left( -\ln \sum{\exp \left( -{{\lambda }_{\mu }}M_{i}^{\mu } \right)} \right)</math> | ||
* intensive Parameter <math>{{\lambda }_{\nu }}=-{{\partial }_{\left\langle {{M}^{\nu }} \right\rangle }}I</math> | * intensive Parameter <math>{{\lambda }_{\nu }}=-{{\partial }_{\left\langle {{M}^{\nu }} \right\rangle }}I</math> | ||
<math>\to dI=-{{\lambda }_{\nu }}d\left\langle {{M}^{\nu }} \right\rangle </math> | :<math>\to dI=-{{\lambda }_{\nu }}d\left\langle {{M}^{\nu }} \right\rangle </math> | ||
==Beziehungen== | ==Beziehungen== | ||
*<math>I\left( P \right)=\sum\limits_{i}{{{P}_{i}}\ln {{P}_{i}}}=Tr\left( \hat{\rho }\ln \hat{\rho } \right)</math> | *<math>I\left( P \right)=\sum\limits_{i}{{{P}_{i}}\ln {{P}_{i}}}=Tr\left( \hat{\rho }\ln \hat{\rho } \right)</math> |
Version vom 12. September 2010, 19:23 Uhr
klassische Mechanik
- Prinzip der Vorurteilsfreien Schätzung in der klassischen Mechanik
--> gleiche a –priori Wahrscheinlichkeiten
- Hamiltonfunktion mit Hamiltongleichungen
- Lösungen Trajektorien im Phasenraum
Satz von Liouville
Das Phasenraumvolumen ist invariant unter Zeitentwicklung --> gleiche Phasenvolumina ^= gleiche a-priori Wahrscheinlichkeit bleibt bestehen --> Informationsmaß über Microzustand kann mit der zeit nicht zunehmen mit
Zustand
(thermodynamischer Zustand durch Mittelwerte der Phasenraumfunktionen
Shannon-Information
- Information: Welches Ereignis tritt ein?
- Wie viel weiß ich von meinem System?
- Maximum --> schafte Verteilung
minimum
mit 1 Nebendbedingung führt unter Verwendung eines Lagrange-Parameters zu
lässt keine freien Parameter zu also erhält man N Gleichungen
so erhält man wegen der Normierung () die
Nebenbedingungen
- führt zum Informationstheoretischen Prinzip nach Jaynes
- Wahrscheinlichkeitsverteilung die die minimale Information enthält bei Erfüllung aller bekannten Nebenbedingungen
- Variationsverfahren mit Nebenbedingungen
- Shannon-Information soll minimal werden
- Es gibt m+1 Nebenbedingungen:
- führt zur Variation
- daraus erhält man die verallgemeinerte kanonische Verteilung
- die m+1 Lagrange-Multiplikatoren sind also eindeutig bestimmt
- , da
Fundamentalbeziehung
Beziehungen
Kullback-Information
- Informationsgewinn
- Minium Variation mit NB:
- Informationsgewinn ^= Änderung der Shannon Information
- Mit Dichtematrix
- Für Druckensemble und nicht im Gleichgewichtszustand folgt
- mit Energie
- der Informationsgewinn kann nur abnehmen mit
- --> die Entropieproduktion ist ststs
Situation in der QM
- Microzustände
- Microobservablen (durch Maximalmessung (Satz von vertauschbaren Observabelen)) Operator
- Messert Eigenwert zum Eingenzustand
- Erwartungwert
- vorurteilsfreie Schätzung durch Maximalmessung