Beta-Zerfall: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
 
Zeile 18: Zeile 18:
[[Datei:13.1.beta.messung.png|miniatur|hochkant=3|zentriert|Schema beta Strahlung]]
[[Datei:13.1.beta.messung.png|miniatur|hochkant=3|zentriert|Schema beta Strahlung]]


Beim ß-Zerfall ist neben der {{FB|Halbwertzeit}} <math>t_{1/2} = \frac{0,69}{\lambda}</math> das Energie bzw. {{FB|Impulsspektrum der Elektronen}} (Positronen) meßbar. Ein theoretischer
Beim ß-Zerfall ist neben der {{FB|Halbwertzeit}} <math>t_{1/2} = \frac{0,69}{\lambda}</math> das Energie bzw. {{FB|Impulsspektrum der Elektronen}} (Positronen) meßbar. Ein theoretischer Ansatz muß die Form des Impulsspektrums <math>\lambda(p_e)</math>, d. h. die Wahrscheinlichkeit für die Emission eines Elektrons (Positrons) mit dem Impuls <math>p_e</math> wiedergeben. Die Intergration über alle <math>\lambda(p_e)</math> ergibt
Ansatz muß die Form des Impulsspektrums <math>\lambda(p_e)</math>, d. h. die Wahrscheinlichkeit für die Emission eines Elektrons (Positrons)
mit dem Impuls <math>p_e</math> wiedergeben. Die Intergration über alle <math>\lambda(p_e)</math> ergibt
die {{FB|Gesamtübergangswahrscheinlichkeit}} <math>\lambda=\int \lambda(p_e)d p_e </math> und damit
die {{FB|Gesamtübergangswahrscheinlichkeit}} <math>\lambda=\int \lambda(p_e)d p_e </math> und damit
die Halbwertzeit <math>t_{1/ 2}</math>.
die Halbwertzeit <math>t_{1/ 2}</math>.
Zeile 28: Zeile 26:
Übergängen. Störungstheorie ([[Fermis Goldene Regel]])
Übergängen. Störungstheorie ([[Fermis Goldene Regel]])
:<math>\lambda =\frac{2\pi }{h}{{\left| {{\mathcal{H}}_{if}} \right|}^{2}}\frac{dN}{d{{E}_{0}}}</math> mit  
:<math>\lambda =\frac{2\pi }{h}{{\left| {{\mathcal{H}}_{if}} \right|}^{2}}\frac{dN}{d{{E}_{0}}}</math> mit  
::Wechselwirkungsoperatord(<math>\mathcal{H}</math>: <math><{{\mathcal{H}}_{if}}>=\int {{\psi }_{f}}\mathcal{H}{{\psi }_{i}}d\tau </math>
*Wechselwirkungsoperator <math>\mathcal{H}</math>: <math><{{\mathcal{H}}_{if}}>=\int {{\psi }_{f}}\mathcal{H}{{\psi }_{i}}d\tau </math>
::Dichte der Endzustände dN/dE<sub>0</sub>
*Dichte der Endzustände dN/dE<sub>0</sub>
[[Datei:13.2.beta.fermi.ansatz.png|miniatur|Fermi-Ansatz  
[[Datei:13.2.beta.fermi.ansatz.png|miniatur|Fermi-Ansatz  
<math>\lambda =\frac{2\pi }{h}{{\left| {{\mathcal{H}}_{if}} \right|}^{2}}\frac{dN}{d{{E}_{0}}}</math>
<math>\lambda =\frac{2\pi }{h}{{\left| {{\mathcal{H}}_{if}} \right|}^{2}}\frac{dN}{d{{E}_{0}}}</math>
Zeile 36: Zeile 34:


:<math><{{\mathcal{H}}_{if}}>=\int \Phi _{\nu }^{*}\left( {{P}_{\nu }} \right)\Phi _{e}^{*}\left( {{P}_{e}} \right)\Phi _{f}^{{}}\left( A,Z+1 \right)\mathcal{H}\Phi _{i}^{{}}\left( A,Z \right)d\tau </math> mit
:<math><{{\mathcal{H}}_{if}}>=\int \Phi _{\nu }^{*}\left( {{P}_{\nu }} \right)\Phi _{e}^{*}\left( {{P}_{e}} \right)\Phi _{f}^{{}}\left( A,Z+1 \right)\mathcal{H}\Phi _{i}^{{}}\left( A,Z \right)d\tau </math> mit
::<math>\Phi _{\nu }^{*}\left( {{P}_{\nu }} \right)\Phi _{e}^{*}\left( {{P}_{e}} \right)</math>-Leptonen- Wellenfunktion
*<math>\Phi _{\nu }^{*}\left( {{P}_{\nu }} \right)\Phi _{e}^{*}\left( {{P}_{e}} \right)</math>-Leptonen- Wellenfunktion
::<math>\Phi _{f}^{{}}\left( A,Z+1 \right)\Phi _{i}^{{}}\left( A,Z \right)</math>-Nukleonen Wellenfunktion
*<math>\Phi _{f}^{{}}\left( A,Z+1 \right)\Phi _{i}^{{}}\left( A,Z \right)</math>-Nukleonen Wellenfunktion
::(Integration wegen Nukleonen-WF nur über das Kernvolumen)
*(Integration wegen Nukleonen-WF nur über das Kernvolumen)





Aktuelle Version vom 28. August 2011, 15:36 Uhr

Die Abfrage enthält eine leere Bedingung.


(A,Z)(A,Z+1)+e+ν¯βZerfall(A,Z)(A,Z1)+e++νβ+Zerfalle+(A,Z)(A,Z1)+e+νeEinfang wobei β+-Zerfall und e-Einfang sind konkurrierende Vorgänge

reduziert formuliert als

np+e+ν¯βZerfallpn+e++νβ+Zerfalle+pn+e+νeEinfang

Beta-Zerfall energetisch möglich --> siehe Isobarenregel als Folgerung aus der Weizsäckerschen Massenformel

Fehler beim Erstellen des Vorschaubildes: Die Miniaturansicht konnte nicht am vorgesehenen Ort gespeichert werden
Schema beta Strahlung

Beim ß-Zerfall ist neben der Halbwertzeit t1/2=0,69λ das Energie bzw. Impulsspektrum der Elektronen (Positronen) meßbar. Ein theoretischer Ansatz muß die Form des Impulsspektrums λ(pe), d. h. die Wahrscheinlichkeit für die Emission eines Elektrons (Positrons) mit dem Impuls pe wiedergeben. Die Intergration über alle λ(pe) ergibt die Gesamtübergangswahrscheinlichkeit λ=λ(pe)dpe und damit die Halbwertzeit t1/2.


Fermi-Ansatz [1] in Analogie zu elektromagnetischen Übergängen. Störungstheorie (Fermis Goldene Regel)

λ=2πh|if|2dNdE0 mit
Fermi-Ansatz λ=2πh|if|2dNdE0 Störungstheorie (Fermi Goldene Regel)
<if>=Φν*(Pν)Φe*(Pe)Φf(A,Z+1)Φi(A,Z)dτ mit


Bei Leptonen-WF Ansatz freier Teilchen, d. h. auslaufende ebene Wellen Φ(p)~ei(pr)/=1+i(pr)/12((pr)/)2+

Bei der Integration kann man zunächst alle Anteile mit (pr)/ vernachlässigen, da für Ee1MeV und für alle Eν gilt:

/p=λ¯K200×1015m/E[MeV]

und damit pR/102. Man betrachtet die Leptonenwellenfunktionen also als konstant im Bereich des Kernvolumens. Diese Näherung ist gleichbedeutend mit der Annahme, daß bei der Leptonenemission kein {{FB|Bahndrehimpuls} weggetragen wird ("erlaubte" Übergänge. Δl=0).

Fehler beim Erstellen des Vorschaubildes: Die Miniaturansicht konnte nicht am vorgesehenen Ort gespeichert werden
"klassische" Deutung L=Rp=QMn Bei pR/1 ist nur n = 0 maßgebend

Den Wechselwirkungsoperator ersetzt man durch die Kopplungskonstante g, so daß if insgesamt unabhängig von pe wird und die Abhängigkeit des Impulsspektrums allein im statistischen Faktor dN/dE0 (der Dichte der Endzustände) steckt.

Allgemein bei freien Teilchen dNp2dp, somit bei gleichzeitiger Emission beider Leptonen dNdN(pe)dN(pν) mit E0=El+Eν=(m0c2)2+(pec)2+pνc (Neutrinomasse = 0 gesetzt). Damit wird das Impulsspektrum λ(pe)dpe:

λ(pe)dpe~dNdE0~pe2dpepν2dpνdE0~pe2(E0Ee)2dpe wegen

pν2=(E0Ee)2/c2 und dpνdE=1c

Durch Extrapolation bei der Fermi-Darstellung Bestimmung von E0. Damit auch die Möglichkeit zur Bestimmung einer möglichen Neutrinomasse, deren Existenz einen großen Einfluß auf Struktur und Entwicklung des Universums hat. Dabei wegen Fehlerabschätzung E0 möglichst klein wählen, z. B. Tritium-Zerfall 3H3He+e+ν¯ mit E0=18keV(t1/212a) [mνc2 zur Zeit 7eV].


Integration über Impulsspektrum:

λ=ln2t12=0P0λ(pe)dpe=const f(Z,E0)  mit f ( Z, E0) über Coulomb-Korrekturfaktor


Die f-Werte sind tabelliert [2]. Sie enthalten die gesamte Energieabhängigkeit. Grobe Abschätzung:

nichtrelat. Bereich
(Eo « 1 MeV) : Eepe2

f~pe6dpe~p07~E03,5

relat. Bereich (EO > 1 MeV)
Eepe2

f~pe4dpe~p05~E05


Bei genauerer Betrachtung muß man berücksichtigen, daß die Spins der beiden Leptonen parallel (Gamow-Teller-Übergänge) oder antiparallel (Fermi-Übergänge) stehen können. Für erlaubte Übergänge (Δl=0) gelten somit die Auswahlregeln:

Fermi-Ü
Ii=IfΔI=0
Gamow-Teller-Ü
Ii=If+1ΔI=0,±1


anschaulich:

++Ferminp+e+ν¯++Gamow-Teller

Verbotene Übergänge:

Merkmal: größere Drehimpulsänderungen, größere ft1/ 2-Werte Beiträge für diese Übergänge aus: a) Reihenentwicklung der Leptonenwellenfunktionen

eipr/=1+i(pr/)1/2(pr/)2bisher vernachl a¨ ssigt

b) relativistische Wellenfunktionen der Nukleonen mit vN/c-Beiträge


Beispiele für erlaubte und verbotene Übergänge:



Einzelnachweise

  1. Z. Physik 88, 161 (1934)
  2. Feenburg, Trigg, Rev. Mod. Phys. 22, 399

Weitere Informationen

(gehört nicht zum Skript)

Prüfungsfragen

  • ß Übergänge: Prinzipielle Reaktionsgleichung + Bethe-Weizsäcker
  • Neutrinos: Was ist das wozu braucht man die (beim ß Zerfall)
  • Besonderheit beim ß Zerfall? (siehe Kapitel Paritätsverletzung)
  • Übergangsraten aus Fermis goldener Regel ("grobe" Herleitung)
    • Fermi- und GT-Übergänge