Übersicht:Thermodynamik: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Zeile 51: | Zeile 51: | ||
=\exp \left( \psi -{{\lambda }_{\nu }}M_{i}^{\nu } \right)</math> | =\exp \left( \psi -{{\lambda }_{\nu }}M_{i}^{\nu } \right)</math> | ||
* die m+1 Lagrange-Multiplikatoren sind also eindeutig bestimmt | * die m+1 Lagrange-Multiplikatoren sind also eindeutig bestimmt | ||
* <math>\psi =\psi \left( {{\lambda }_{\nu }} \right)=-\ln \sum{\exp \left( -{{\lambda }_{\mu }}M_{i}^{\mu } \right)}</math>, da <math>\begin{align} | |||
& 1=\sum{{{P}_{i}}}=\sum{\exp \left( \psi -{{\lambda }_{\nu }}M_{i}^{\nu } \right)={{e}^{\psi }}{{e}^{{{\lambda }_{\nu }}}}\sum{{{e}^{M_{i}^{\nu }}}}} \\ | |||
& \Rightarrow {{e}^{-\psi }}={{e}^{{{\lambda }_{\nu }}}}\sum{{{e}^{M_{i}^{\nu }}}} \\ | |||
\end{align}</math> | |||
==Fundamentalbeziehung== | ==Fundamentalbeziehung== | ||
*durch eine Legenderetransformation <math>I\left( P \right)\to I\left( \lambda \right)</math> | *durch eine Legenderetransformation <math>I\left( P \right)\to I\left( \lambda \right)</math> |
Version vom 20. Juli 2009, 11:37 Uhr
klassische Mechanik
- Prinzip der Vorurteilsfreien Schätzung in der klassischen Mechanik
--> gleiche a –priori Wahrscheinlichkeiten
- Hamiltonfunktion mit Hamiltongleichungen
- Lösungen Trajektorien im Phasenraum
Satz von Liouville
Das Phasenraumvolumen ist invariant unter Zeitentwicklung --> gleiche Phasenvolumina ^= gleiche a-priori Wahrscheinlichkeit bleibt bestehen --> Informationsmaß über Microzustand kann mit der zeit nicht zunehmen mit
Zustand
(thermodynamischer Zustand durch Mittelwerte der Phasenraumfunktionen mit
Shannon-Information
- Information: Welches Ereignis tritt ein?
- Wie viel weiß ich von meinem System?
- Maximum --> schafte Verteilung
minimum
mit 1 Nebendbedingung führt unter Verwendung eines Lagrange-Parameters zu
lässt keine freien Parameter zu also erhält man N Gleichungen
so erhält man wegen der Normierung () die
Nebenbedingungen
- führt zum Informationstheoretischen Prinzip nach Jaynes
- Wahrscheinlichkeitsverteilung die die minimale Information enthält bei Erfüllung aller bekannten Nebenbedingungen
- Variationsverfahren mit Nebenbedingungen
- Shannon-Information soll minimal werden
- Es gibt m+1 Nebenbedingungen:
- führt zur Variation
- daraus erhält man die verallgemeinerte kanonische Verteilung
- die m+1 Lagrange-Multiplikatoren sind also eindeutig bestimmt
- , da