Übersicht:Thermodynamik: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Zeile 78: Zeile 78:
** <math>1=\sum{{{P}_{i}}}</math>
** <math>1=\sum{{{P}_{i}}}</math>
** <math>{{P}_{i}}={{P}_{i}}'\Rightarrow K=0</math> (kein Gewinn)
** <math>{{P}_{i}}={{P}_{i}}'\Rightarrow K=0</math> (kein Gewinn)
* Informationsgewinn ^= Änderung der Shannon Information  
* Informationsgewinn ^= Änderung der Shannon Information
* Mit Dichtematrix <math>K\left( \rho ,{{\rho }^{0}} \right)=\operatorname{Tr}\left( \hat{\rho }\ln \frac{{\hat{\rho }}}{{{{\hat{\rho }}}^{0}}} \right)=\operatorname{Tr}\left( \hat{\rho }\left( \ln \hat{\rho }-\ln {{{\hat{\rho }}}^{0}} \right) \right)=I\left( {\hat{\rho }} \right)-I\left( {{{\hat{\rho }}}^{0}} \right)-\operatorname{Tr}\left( \hat{\rho }-{{{\hat{\rho }}}^{0}} \right)\ln \left( {{{\hat{\rho }}}^{0}} \right)</math>
* Mit Dichtematrix <math>K\left( \rho ,{{\rho }^{0}} \right)=\operatorname{Tr}\left( \hat{\rho }\ln \frac{{\hat{\rho }}}{{{{\hat{\rho }}}^{0}}} \right)=\operatorname{Tr}\left( \hat{\rho }\left( \ln \hat{\rho }-\ln {{{\hat{\rho }}}^{0}} \right) \right)=I\left( {\hat{\rho }} \right)-I\left( {{{\hat{\rho }}}^{0}} \right)-\operatorname{Tr}\left( \hat{\rho }-{{{\hat{\rho }}}^{0}} \right)\ln \left( {{{\hat{\rho }}}^{0}} \right)</math>
* Für Druckensemble <math>{{{\hat{\rho }}}^{0}}=\exp \left( {{\psi }^{0}}-{{\beta }^{0}}\left( H+{{p}^{0}}V \right) \right)</math> und <math>\rho</math> nicht im Gleichgewichtszustand folgt <math>K\left( \rho ,{{\rho }^{0}} \right)=\frac{S-{{S}^{0}}}{{{T}^{0}}}+\frac{U-{{U}^{0}}+{{p}^{0}}\left( V-{{V}^{0}} \right)}{k{{T}^{0}}}</math>
* Für Druckensemble <math>{{{\hat{\rho }}}^{0}}=\exp \left( {{\psi }^{0}}-{{\beta }^{0}}\left( H+{{p}^{0}}V \right) \right)</math> und <math>\rho</math> nicht im Gleichgewichtszustand folgt <math>K\left( \rho ,{{\rho }^{0}} \right)=\frac{S-{{S}^{0}}}{{{T}^{0}}}+\frac{U-{{U}^{0}}+{{p}^{0}}\left( V-{{V}^{0}} \right)}{k{{T}^{0}}}</math>
Zeile 84: Zeile 84:
* der Informationsgewinn kann nur abnehmen <math>{{d}_{t}}K\left( \rho ,{{\rho }^{0}} \right)=\frac{{{d}_{t}}\Lambda }{k{{T}^{0}}}</math> mit <math>\nu =-\frac{1}{T}{{d}_{t}}\Lambda </math>
* der Informationsgewinn kann nur abnehmen <math>{{d}_{t}}K\left( \rho ,{{\rho }^{0}} \right)=\frac{{{d}_{t}}\Lambda }{k{{T}^{0}}}</math> mit <math>\nu =-\frac{1}{T}{{d}_{t}}\Lambda </math>
* --> die Entropieproduktion ist ststs <math>\ge 0</math>
* --> die Entropieproduktion ist ststs <math>\ge 0</math>
==Situation in der QM==
* Microzustände <math>\left| \psi  \right\rangle \in \mathcal{H}</math>
* Microobservablen (durch Maximalmessung (Satz von vertauschbaren Observabelen)) Operator <math>{\hat{\mathcal{M}}}</math>
* Messert Eigenwert zum Eingenzustand <math>{{{\hat{M}}}_{\alpha }}\left| \psi  \right\rangle ={{m}_{\alpha }}\left| \psi  \right\rangle </math>
* Erwartungwert
** für reine Zustände <math>\left\langle {{{\hat{M}}}_{\alpha }} \right\rangle =\left\langle \psi \left| {{M}_{\alpha }} \right|\psi  \right\rangle =\operatorname{Tr}\left( \hat{\rho }\hat{M} \right)</math> mit <math>\hat{\rho }=\left| \psi  \right\rangle \left\langle  \psi  \right|</math>
** für gemischte Zustände <math>\left\langle {{{\hat{M}}}_{\alpha }} \right\rangle =\sum{{{P}_{i}}\left\langle \psi \left| {{M}_{\alpha }} \right|\psi  \right\rangle }=\operatorname{Tr}\left( \hat{\rho }{{{\hat{M}}}_{\alpha }} \right)</math> mit <math>\hat{\rho }=\sum{{{P}_{i}}\left| \psi  \right\rangle \left\langle  \psi  \right|}</math>


[[Kategorie:Thermodynamik]]
[[Kategorie:Thermodynamik]]

Version vom 20. Juli 2009, 12:53 Uhr

klassische Mechanik

  • Prinzip der Vorurteilsfreien Schätzung in der klassischen Mechanik

--> gleiche a –priori Wahrscheinlichkeiten

  • Hamiltonfunktion mit Hamiltongleichungen
  • Lösungen Trajektorien im Phasenraum

Satz von Liouville

Das Phasenraumvolumen ist invariant unter Zeitentwicklung --> gleiche Phasenvolumina ^= gleiche a-priori Wahrscheinlichkeit bleibt bestehen --> Informationsmaß über Microzustand kann mit der zeit nicht zunehmen I(t1)I(t2) mit t1<t2

Zustand

Mν=dξρ(ξ)Mν(ξ) (thermodynamischer Zustand durch Mittelwerte der Phasenraumfunktionen ρ(ξ)=exp(ψλνMν(ξ))=z1exp(λνMν(ξ)) mit z=eψ=eλνMν(ξ)dξ

Shannon-Information

minimum

  • Maximum des Nichtwissens entspricht minimaler Shannon-Information -- >I(P)<0 Variation der Pi umδPi

mit 1 Nebendbedingung iPi=1 führt unter Verwendung eines Lagrange-Parametersλ zu

I(P)=PilnPi+λ(Pi1)

die Variation, also δI(P)=(lnPi+1)δPi

lässt keine freien Parameter zu also erhält man N Gleichungen

(lnPi)=(λ+1)=const.

so erhält man wegen der Normierung (iPi=1) die

GleichverteilungPi=1N

Nebenbedingungen

Fundamentalbeziehung

I(P)=iPilnPi=iPilnexp(ψλνMiν)=ψiPi1λνiPiMiν=ψλνMν

dI=λνdMν

Beziehungen

Kullback-Information

Situation in der QM