Magnetische Multipole

Aus PhysikWiki
Version vom 16. September 2010, 11:18 Uhr von Schubotz (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen



(stationär)

Ausgangspunkt ist

A¯(r¯)=μ04πR3d3r´j¯(r¯´)|r¯r¯´|

(mit der Coulomb- Eichung A¯(r¯)=0)


mit den Randbedingungen

A¯(r¯)0 für r→ unendlich

Taylorentwicklung nach

1|r¯r¯´|

von analog zum elektrischen Fall:

Die Stromverteilung j¯(r¯´) sei stationär für r>>r´

1|r¯r¯´|=1r+1r3(r¯r¯´)+...
A¯(r¯)=μ04πrR3d3r´j¯(r¯´)+μ04πr3R3d3r´j¯(r¯´)(r¯r¯´)+...

Monopol- Term

Mit

r´[xk´j¯(r¯´)]=xk´(r´j¯(r¯´))+j¯(r¯´)(r´xk´)

Im stationären Fall folgt aus der Kontinuitätsgleichung:

r´j¯(r¯´)=0
r´[xk´j¯(r¯´)]=j¯(r¯´)(r´xk´)=jlδkl=jk

Mit r´[xk´j¯(r¯´)]=jk folgt dann:

d3r´jk(r¯´)=d3r´r´[xk´j¯(r¯´)]=Sdf¯[xk´j¯(r¯´)]=0

Somit verschwindet der Monopolterm in der Theorie.

Dipol- Term

mit [r¯´×j¯(r¯´)]×r¯=(r¯r¯´)j¯(r¯j¯)r¯´=2(r¯r¯´)j¯[(r¯r¯´)j¯+(r¯j¯)r¯´] und mit

r´[xk´(r¯r¯´)j¯]=[(r¯r¯´)jk+xk´(r¯j¯)+xk´(r¯r¯´)r´j¯]r´j¯=0r´[xk´(r¯r¯´)j¯]=[(r¯r¯´)jk+xk´(r¯j¯)]

Folgt:

R3d3r´r´[xk´(r¯r¯´)j¯]=R3d3r´[(r¯r¯´)jk+xk´(r¯j¯)]=0

Da

R3d3r´r´[xk´(r¯r¯´)j¯]=Sdf¯[xk´(r¯r¯´)j¯]=0

weil der Strom verschwindet! Somit gibt der Term

[(r¯r¯´)j¯+(r¯j¯)r¯´]

keinen Beitrag zum

μ04πr3R3d3r´j¯(r¯´)(r¯r¯´)

Also:

A¯(r¯)=μ04πr312R3d3r´(r¯´×j¯(r¯´))×r¯

Als Dipolpotenzial!!

A¯(r¯):=μ04πr3m¯×r¯m¯=12R3d3r´(r¯´×j¯(r¯´))

das magnetische Dipolmoment!

Analog zu

Φ(r¯):=14πε0r3p¯r¯p¯:=R3d3r´r¯´ρ(r¯´)

dem elektrischen Dipolmoment

Die magnetische Induktion des Dipolmomentes ergibt sich als:

B¯(r¯):=×μ04πr3m¯×r¯=μ04πr5[3(m¯r¯)r¯r2m¯]

Wegen:

×(a¯×b¯)=(b¯)a¯(a¯)b¯+a¯(b¯)b¯(a¯) mit a¯=m¯r3b¯=r¯diva¯=3m¯r¯r5divb¯=3(b¯)a¯=3m¯r2r5(a¯)b¯=m¯r3

Analog ergab sich als elektrisches Dipolfeld:

E¯(r¯):=14πε0r5[3(p¯r¯)r2p¯]
Beispiel: Ebene Leiterschleife L:


df¯´=12r¯´×ds¯´d3r¯´j(r¯´)=ds¯´I

Mit I = Strom durch den Leiter

m¯=12Ld3r´(r¯´×j¯(r¯´))=I2Lr¯´×ds¯´=IFdf¯´=IFn¯

Dabei ist

n¯

die Normale auf der von L eingeschlossenen Fläche F

Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment m¯


analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment

p¯=qa¯,
welches von der positiven zur negativen Ladung zeigt.


Bewegte Ladungen

N Teilchen mit den Massen mi und den Ladungen qi bewegen sich.

Dabei sei die spezifische Ladung qimi=qm konstant:

ρ(r¯)=iqiδ(r¯r¯i)j¯(r¯)=iqiv¯iδ(r¯r¯i)v¯i=dr¯idt

Das magnetische Dipolmoment beträgt:

m¯=12Ld3r´(r¯´×j¯(r¯´))=12iqid3r´r¯´×v¯iδ(r¯´r¯i)=12iqir¯i×v¯i=12iqimimir¯i×v¯iqimi=qmm¯=q2mL¯

Mit dem Bahndrehimpuls L¯:

m¯=q2mL¯

gilt aber auch für starre Körper!

  • Allgemeines Gesetz!

Jedoch gilt dies nicht für den Spin eines Elektrons!!!

m¯=ge2mS¯g2

Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen!

Kraft auf eine Stromverteilung

j¯(r¯´)=ρi(r¯´)v¯(r¯´)

im Feld einer externen magnetischen Induktion B¯(r¯´):

Spürt die Lorentzkraft

F¯=d3r´j¯(r¯´)×B¯(r¯´)

Talyorentwicklung liefert:

B¯(r¯´)=B¯(r¯)+[(r¯´r¯)]B¯(r¯)+....F¯=[d3r´j¯(r¯´)]×B¯(r¯´)+d3r´j¯(r¯´)×[(r¯´r¯)]B¯(r¯)+...

im stationären Fall gilt wieder:

[d3r´j¯(r¯´)]=0 (keine Monopole)

Also:

F¯=d3r´j¯(r¯´)×[(r¯´)r]B¯(r¯)d3r´j¯(r¯´)×[(r¯)r]B¯(r¯)d3r´j¯(r¯´)×[(r¯)r]B¯(r¯)=0,dad3r´j¯(r¯´)=0F¯=d3r´j¯(r¯´)×[(r¯´)r]B¯(r¯)[(r¯´)r]B¯(r¯)=r[(r¯´)B¯(r¯)]r¯´×[r×B¯(r¯)]

Man fordert:

[r×B¯(r¯)]=0

(Das externe Feld soll keine Stromwirbel im Bereich von j¯(r¯´) haben:

F¯=d3r´j¯(r¯´)×r[(r¯´)B¯(r¯)]j¯(r¯´)×r[(r¯´)B¯(r¯)]=r×[((r¯´)B¯(r¯))j¯(r¯´)]+[(r¯´)B¯(r¯)]r×j¯(r¯´)r×j¯(r¯´)=0F¯=d3r´r×[((r¯´)B¯(r¯))j¯(r¯´)]=r×(m¯×B¯(r¯))F¯=r×(m¯×B¯(r¯))=(m¯r)B¯(r¯)=r(m¯B¯(r¯))

(Vergl. S. 34)