Weitere Eigenschaften der Dirac-Gleichung
Der Artikel Weitere Eigenschaften der Dirac-Gleichung basiert auf der Vorlesungsmitschrift von Moritz Schubotz des 1.Kapitels (Abschnitt 6) der Quantenmechanikvorlesung von Prof. Dr. T. Brandes. |
|}}
Wir starten von
- mit der Wahrscheinlichkeitsdichte ρ und der Wahrscheinlichkeitsstromdichte jk.
- Lorentz-Invarianz
Relativistische Notation
kontravarianter VierervektorVierervektor mit Index oben
kovarianter Vierervektor mit Index unten (kow steht below)
- Das relativistische Skalarprodukt
bleibt invariant unter Lorentz-Transformation.
- Metrischer Tensor
- in der SRT der selbe überall
- Hoch und Runterziehen
- Lorentz-Transformation wie in (1.11) (Bewegung in x-Richtung)
Für Vierervektoren, die sich wie der Koordinatenvektor bei Lorentz-Transformation transformieren(1.53), ist Lorentz-invariant.
GradientVierergradient (etc)
Die Dirac-Gleichung folgt aus
Dirac-Gleichung (1.56)
- Relativistische Invarianz: Gleiche Form der Dirac-Gleichun in zwei System S,S‘ (die sich gleichförmig gegeneinander bewegen) aber nicht Invarianz der Dgl. gegenüber Lorentz-Transformationen
Es muss also gelten
(Hier ohne Vektorpotential, mit Vektorpotential A analog, vgl. Rollnik II)
Lorentz-Transformation
Ableitung
Selbe Ableitung der Dirac-Gleichung
Also muss gelten
Multiplikation von S-1 von links
Wenn (1.58) erfüllt ist, folgt relativistische Invarianz.
Für beliebige ß durch Exponenten (wichtiger Trick, steckt natürlich tiefere Mathematik dahinter: Liegruppen, Lie-Algebra…)
Berechnung (AUFGABE) ergibt
- Kontinuitätsgleichung, Viererstromdichte (1.37)
(ViererstromdichteViererstromdichte) (1.62)
(KontinuitätsgleichungKontinuitätsgleichung) (1.63)
Lorentz-Invarianz von : zeige wobei
(1.65) {{{3}}}
→ Lorentz-Invarianz von