Übersicht:Thermodynamik: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Zeile 47: Zeile 47:
         =\sum {{P}_{i}}\ln {{P}_{i}}+\lambda \left( {{P}_{i}}-1 \right)+{{\lambda }_{\nu }}M_{i}^{\nu }{{P}_{i}}</math>
         =\sum {{P}_{i}}\ln {{P}_{i}}+\lambda \left( {{P}_{i}}-1 \right)+{{\lambda }_{\nu }}M_{i}^{\nu }{{P}_{i}}</math>
* führt zur Variation  <math>\delta I\left( P \right)
* führt zur Variation  <math>\delta I\left( P \right)
   =\left( \sum \ln {{P}_{i}}+\underbrace{\left( \lambda -1 \right)}_{:=\psi }
   =\left( \sum \ln {{P}_{i}}+\underbrace{1+\lambda }_{:=-\psi }+{{\lambda }_{\nu }}M_{i}^{\nu } \right)\delta {{P}_{i}}=0</math>
  +{{\lambda }_{\nu }}M_{i}^{\nu } \right)\delta {{P}_{i}}=0</math>
* daraus erhält man die [[verallgemeinerte kanonische Verteilung]] <math>{{P}_{i}}
 
  =\exp \left( \psi -{{\lambda }_{\nu }}M_{i}^{\nu } \right)</math>
* die m+1 Lagrange-Multiplikatoren sind also eindeutig bestimmt
==Fundamentalbeziehung==
durch eine Legenderetransformation <math>I\left( P \right)\to I\left( \lambda  \right)</math>
durch eine Legenderetransformation <math>I\left( P \right)\to I\left( \lambda  \right)</math>


[[Kategorie:Thermodynamik]]
[[Kategorie:Thermodynamik]]

Version vom 20. Juli 2009, 12:08 Uhr

klassische Mechanik

  • Prinzip der Vorurteilsfreien Schätzung in der klassischen Mechanik

--> gleiche a –priori Wahrscheinlichkeiten

  • Hamiltonfunktion mit Hamiltongleichungen
  • Lösungen Trajektorien im Phasenraum

Satz von Liouville

Das Phasenraumvolumen ist invariant unter Zeitentwicklung --> gleiche Phasenvolumina ^= gleiche a-priori Wahrscheinlichkeit bleibt bestehen --> Informationsmaß über Microzustand kann mit der zeit nicht zunehmen mit

Zustand

(thermodynamischer Zustand durch Mittelwerte der Phasenraumfunktionen mit

Shannon-Information

  • Information: Welches Ereignis tritt ein?
  • Wie viel weiß ich von meinem System?
  • Maximum --> schafte Verteilung

minimum

  • Maximum des Nichtwissens entspricht minimaler Shannon-Information -- > Variation der um

mit 1 Nebendbedingung führt unter Verwendung eines Lagrange-Parameters zu

die Variation, also

lässt keine freien Parameter zu also erhält man N Gleichungen

so erhält man wegen der Normierung () die

Gleichverteilung

Nebenbedingungen

  • führt zum Informationstheoretischen Prinzip nach Jaynes
  • Wahrscheinlichkeitsverteilung die die minimale Information enthält bei Erfüllung aller bekannten Nebenbedingungen
  • Variationsverfahren mit Nebenbedingungen
  • Shannon-Information soll minimal werden
  • Es gibt m+1 Nebenbedingungen:
    • Gesamtwahrscheinlichkeiten sind 1:
    • Kenntnis von Mittelwerten makroskopischer Observabelen
    • also mit Lagrange Multiplikatoren:
  • führt zur Variation
  • daraus erhält man die verallgemeinerte kanonische Verteilung
  • die m+1 Lagrange-Multiplikatoren sind also eindeutig bestimmt

Fundamentalbeziehung

durch eine Legenderetransformation