Übersicht:Thermodynamik: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Zeile 51: Zeile 51:
   =\exp \left( \psi -{{\lambda }_{\nu }}M_{i}^{\nu } \right)</math>
   =\exp \left( \psi -{{\lambda }_{\nu }}M_{i}^{\nu } \right)</math>
* die m+1 Lagrange-Multiplikatoren sind also eindeutig bestimmt
* die m+1 Lagrange-Multiplikatoren sind also eindeutig bestimmt
* <math>\psi =\psi \left( {{\lambda }_{\nu }} \right)=-\ln \sum{\exp \left( -{{\lambda }_{\mu }}M_{i}^{\mu } \right)}</math>, da <math>\begin{align}
  & 1=\sum{{{P}_{i}}}=\sum{\exp \left( \psi -{{\lambda }_{\nu }}M_{i}^{\nu } \right)={{e}^{\psi }}{{e}^{{{\lambda }_{\nu }}}}\sum{{{e}^{M_{i}^{\nu }}}}} \\
& \Rightarrow {{e}^{-\psi }}={{e}^{{{\lambda }_{\nu }}}}\sum{{{e}^{M_{i}^{\nu }}}} \\
\end{align}</math>
==Fundamentalbeziehung==
==Fundamentalbeziehung==
*durch eine Legenderetransformation <math>I\left( P \right)\to I\left( \lambda  \right)</math>
*durch eine Legenderetransformation <math>I\left( P \right)\to I\left( \lambda  \right)</math>

Version vom 20. Juli 2009, 12:37 Uhr

klassische Mechanik

  • Prinzip der Vorurteilsfreien Schätzung in der klassischen Mechanik

--> gleiche a –priori Wahrscheinlichkeiten

  • Hamiltonfunktion mit Hamiltongleichungen
  • Lösungen Trajektorien im Phasenraum

Satz von Liouville

Das Phasenraumvolumen ist invariant unter Zeitentwicklung --> gleiche Phasenvolumina ^= gleiche a-priori Wahrscheinlichkeit bleibt bestehen --> Informationsmaß über Microzustand kann mit der zeit nicht zunehmen mit

Zustand

(thermodynamischer Zustand durch Mittelwerte der Phasenraumfunktionen mit

Shannon-Information

  • Information: Welches Ereignis tritt ein?
  • Wie viel weiß ich von meinem System?
  • Maximum --> schafte Verteilung

minimum

  • Maximum des Nichtwissens entspricht minimaler Shannon-Information -- > Variation der um

mit 1 Nebendbedingung führt unter Verwendung eines Lagrange-Parameters zu

die Variation, also

lässt keine freien Parameter zu also erhält man N Gleichungen

so erhält man wegen der Normierung () die

Gleichverteilung

Nebenbedingungen

  • führt zum Informationstheoretischen Prinzip nach Jaynes
  • Wahrscheinlichkeitsverteilung die die minimale Information enthält bei Erfüllung aller bekannten Nebenbedingungen
  • Variationsverfahren mit Nebenbedingungen
  • Shannon-Information soll minimal werden
  • Es gibt m+1 Nebenbedingungen:
    • Gesamtwahrscheinlichkeiten sind 1:
    • Kenntnis von Mittelwerten makroskopischer Observabelen
    • also mit Lagrange Multiplikatoren:
  • führt zur Variation
  • daraus erhält man die verallgemeinerte kanonische Verteilung
  • die m+1 Lagrange-Multiplikatoren sind also eindeutig bestimmt
  • , da

Fundamentalbeziehung

  • durch eine Legenderetransformation

  • extensive Parameter
  • intensive Parameter