Übersicht:Thermodynamik: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Zeile 78: Zeile 78:
** <math>1=\sum{{{P}_{i}}}</math>
** <math>1=\sum{{{P}_{i}}}</math>
** <math>{{P}_{i}}={{P}_{i}}'\Rightarrow K=0</math> (kein Gewinn)
** <math>{{P}_{i}}={{P}_{i}}'\Rightarrow K=0</math> (kein Gewinn)
* Informationsgewinn ^= Änderung der Shannon Information  
* Informationsgewinn ^= Änderung der Shannon Information
* Mit Dichtematrix <math>K\left( \rho ,{{\rho }^{0}} \right)=\operatorname{Tr}\left( \hat{\rho }\ln \frac{{\hat{\rho }}}{{{{\hat{\rho }}}^{0}}} \right)=\operatorname{Tr}\left( \hat{\rho }\left( \ln \hat{\rho }-\ln {{{\hat{\rho }}}^{0}} \right) \right)=I\left( {\hat{\rho }} \right)-I\left( {{{\hat{\rho }}}^{0}} \right)-\operatorname{Tr}\left( \hat{\rho }-{{{\hat{\rho }}}^{0}} \right)\ln \left( {{{\hat{\rho }}}^{0}} \right)</math>
* Mit Dichtematrix <math>K\left( \rho ,{{\rho }^{0}} \right)=\operatorname{Tr}\left( \hat{\rho }\ln \frac{{\hat{\rho }}}{{{{\hat{\rho }}}^{0}}} \right)=\operatorname{Tr}\left( \hat{\rho }\left( \ln \hat{\rho }-\ln {{{\hat{\rho }}}^{0}} \right) \right)=I\left( {\hat{\rho }} \right)-I\left( {{{\hat{\rho }}}^{0}} \right)-\operatorname{Tr}\left( \hat{\rho }-{{{\hat{\rho }}}^{0}} \right)\ln \left( {{{\hat{\rho }}}^{0}} \right)</math>
* Für Druckensemble <math>{{{\hat{\rho }}}^{0}}=\exp \left( {{\psi }^{0}}-{{\beta }^{0}}\left( H+{{p}^{0}}V \right) \right)</math> und <math>\rho</math> nicht im Gleichgewichtszustand folgt <math>K\left( \rho ,{{\rho }^{0}} \right)=\frac{S-{{S}^{0}}}{{{T}^{0}}}+\frac{U-{{U}^{0}}+{{p}^{0}}\left( V-{{V}^{0}} \right)}{k{{T}^{0}}}</math>
* Für Druckensemble <math>{{{\hat{\rho }}}^{0}}=\exp \left( {{\psi }^{0}}-{{\beta }^{0}}\left( H+{{p}^{0}}V \right) \right)</math> und <math>\rho</math> nicht im Gleichgewichtszustand folgt <math>K\left( \rho ,{{\rho }^{0}} \right)=\frac{S-{{S}^{0}}}{{{T}^{0}}}+\frac{U-{{U}^{0}}+{{p}^{0}}\left( V-{{V}^{0}} \right)}{k{{T}^{0}}}</math>
Zeile 84: Zeile 84:
* der Informationsgewinn kann nur abnehmen <math>{{d}_{t}}K\left( \rho ,{{\rho }^{0}} \right)=\frac{{{d}_{t}}\Lambda }{k{{T}^{0}}}</math> mit <math>\nu =-\frac{1}{T}{{d}_{t}}\Lambda </math>
* der Informationsgewinn kann nur abnehmen <math>{{d}_{t}}K\left( \rho ,{{\rho }^{0}} \right)=\frac{{{d}_{t}}\Lambda }{k{{T}^{0}}}</math> mit <math>\nu =-\frac{1}{T}{{d}_{t}}\Lambda </math>
* --> die Entropieproduktion ist ststs <math>\ge 0</math>
* --> die Entropieproduktion ist ststs <math>\ge 0</math>
==Situation in der QM==
* Microzustände <math>\left| \psi  \right\rangle \in \mathcal{H}</math>
* Microobservablen (durch Maximalmessung (Satz von vertauschbaren Observabelen)) Operator <math>{\hat{\mathcal{M}}}</math>
* Messert Eigenwert zum Eingenzustand <math>{{{\hat{M}}}_{\alpha }}\left| \psi  \right\rangle ={{m}_{\alpha }}\left| \psi  \right\rangle </math>
* Erwartungwert
** für reine Zustände <math>\left\langle {{{\hat{M}}}_{\alpha }} \right\rangle =\left\langle \psi \left| {{M}_{\alpha }} \right|\psi  \right\rangle =\operatorname{Tr}\left( \hat{\rho }\hat{M} \right)</math> mit <math>\hat{\rho }=\left| \psi  \right\rangle \left\langle  \psi  \right|</math>
** für gemischte Zustände <math>\left\langle {{{\hat{M}}}_{\alpha }} \right\rangle =\sum{{{P}_{i}}\left\langle \psi \left| {{M}_{\alpha }} \right|\psi  \right\rangle }=\operatorname{Tr}\left( \hat{\rho }{{{\hat{M}}}_{\alpha }} \right)</math> mit <math>\hat{\rho }=\sum{{{P}_{i}}\left| \psi  \right\rangle \left\langle  \psi  \right|}</math>


[[Kategorie:Thermodynamik]]
[[Kategorie:Thermodynamik]]

Version vom 20. Juli 2009, 13:53 Uhr

klassische Mechanik

  • Prinzip der Vorurteilsfreien Schätzung in der klassischen Mechanik

--> gleiche a –priori Wahrscheinlichkeiten

  • Hamiltonfunktion mit Hamiltongleichungen
  • Lösungen Trajektorien im Phasenraum

Satz von Liouville

Das Phasenraumvolumen ist invariant unter Zeitentwicklung --> gleiche Phasenvolumina ^= gleiche a-priori Wahrscheinlichkeit bleibt bestehen --> Informationsmaß über Microzustand kann mit der zeit nicht zunehmen mit

Zustand

(thermodynamischer Zustand durch Mittelwerte der Phasenraumfunktionen mit

Shannon-Information

  • Information: Welches Ereignis tritt ein?
  • Wie viel weiß ich von meinem System?
  • Maximum --> schafte Verteilung

minimum

  • Maximum des Nichtwissens entspricht minimaler Shannon-Information -- > Variation der um

mit 1 Nebendbedingung führt unter Verwendung eines Lagrange-Parameters zu

die Variation, also

lässt keine freien Parameter zu also erhält man N Gleichungen

so erhält man wegen der Normierung () die

Gleichverteilung

Nebenbedingungen

  • führt zum Informationstheoretischen Prinzip nach Jaynes
  • Wahrscheinlichkeitsverteilung die die minimale Information enthält bei Erfüllung aller bekannten Nebenbedingungen
  • Variationsverfahren mit Nebenbedingungen
  • Shannon-Information soll minimal werden
  • Es gibt m+1 Nebenbedingungen:
    • Gesamtwahrscheinlichkeiten sind 1:
    • Kenntnis von Mittelwerten makroskopischer Observabelen
    • also mit Lagrange Multiplikatoren:
  • führt zur Variation
  • daraus erhält man die verallgemeinerte kanonische Verteilung
  • die m+1 Lagrange-Multiplikatoren sind also eindeutig bestimmt
  • , da

Fundamentalbeziehung

  • durch eine Legenderetransformation

  • extensive Parameter
  • intensive Parameter

Beziehungen

  • Verknüpfung mit phänomenologischer Statistik
    • Entropie = fehlende Kenntnis
    • da Shannoninformation (I) nach letzer Messung nicht zunehmen kann, --> kann Entropie (S) nicht abnehmen
    • pähnomenologische Definition der intensiven Variabelen
  • Gibbssche Fundamentalgleichung

Kullback-Information

  • Informationsgewinn
  • Minium Variation mit NB:
    • (kein Gewinn)
  • Informationsgewinn ^= Änderung der Shannon Information
  • Mit Dichtematrix
  • Für Druckensemble und nicht im Gleichgewichtszustand folgt
  • mit Energie
  • der Informationsgewinn kann nur abnehmen mit
  • --> die Entropieproduktion ist ststs

Situation in der QM

  • Microzustände
  • Microobservablen (durch Maximalmessung (Satz von vertauschbaren Observabelen)) Operator
  • Messert Eigenwert zum Eingenzustand
  • Erwartungwert
    • für reine Zustände mit
    • für gemischte Zustände mit